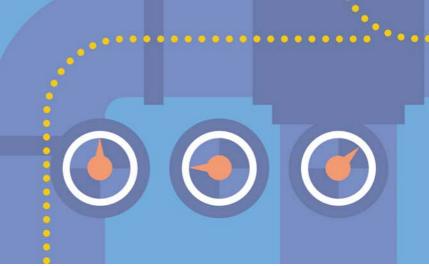
ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC



F500 SERIES

REFINED CONTROL. SUPERIOR RESULTS. AN ADVANCED INVERTER SERIES FOR FANS AND PUMPS.

MITSUBISHI'S NEW SERIES OF FAN/PUMP INVERTERS

Economical

Industry-leading energy savings achieved through newly introduced optimum excitation control.

- By adjusting the magnetic flux to be at its optimum continuously, the motor operates at the highest efficiency thus enabling maximum energy savings.
- Optimum excitation control for highly efficient motor operation and improved economy (For example, when a motor is operating at a load torque of 10%).
- Motor efficiency is improved by approximately 15% over the previous variable-frequency control system when using new optimum excitation control technology.
- Optimum excitation control minimizes motor loss and reduces electricity consumption to provide greater economy and energy savings.
- For example, when an inverter is operating at a frequency of 20Hz:
 - 1. Using optimum excitation control, the electricity consumption ratio is reduced approximately 45% as compared to using the previous variable-frequency control system.
 - 2. A reduction of approximately 5% is attained as compared to using the energy-saving mode.

Connection with the high-performance* FR-BEL DC reactor reduces the initial costs for powersupply and peripheral equipment as well.

*At 100% load, input power ratio is improved to approximately 95% (For example: 400V/15kW).

- Compact, lightweight, high-performance FR-BEL DC reactor connection to all capacities.
- Minimizes power-supply harmonic response current.

Easy to Use

Easy to use for Fan/Pump applications.

- Easy to use air-conditioning control is possible using standard equipment with PID control.
- Commercial switching sequence provides automatic backup should any problem occur.

<complex-block>

Simple Operation

The simple FR-DU04 control panel is provided as standard on all models.

• An optional extension cable can be used with the control panel. Operational and alarm signals can also be shown with this unit.

Parameter setting made easier with simple mode parameters.

- Parameter setting and management has been simplified through the use of read and write only basic parameters. Switching to Standard Mode Parameters quickly changes to high performance parameters.
- High-performance parameter examples: PID control, Commercial power supply switching, 2nd functions, multiple speeds, communication function, etc.

Contents

Model Configuration 3
Standard Specifications 4
External Dimension Diagrams
Terminal Connection Diagram 10
Explanation of Terminal Specification 11
Explanation of Control Panel
Inverter Setup Software and Networks 13
List of Parameters
Description of Parameters
Protective Functions
Connection Examples
Peripherals
List of Options
Motor Applications
Points to Note when Using and
Selecting Units
Points to Note when Selecting Peripherals 38

Setup preparation easier with setup software.

- Using RS-485 communication, the optional Setup Software can be used for the setup and maintenance of inverters when used in connection with a personnel computer.
- Communications is a standard feature. The control panel can be disconnected to allow the unit to be controlled by a personal computer via an RS-485 interface.

Note: A converter is necessary if an RS-232C interface is to be used.

Easy Maintenance

- The life of the cooling fan has been extended by the use of intelligent ON/OFF control, and replacement is easier.
- Simple installation and removal of the control terminal block makes maintenance easier.
- Parameters can be saved using the control panel which is fitted as standard.

When an inverter is replaced, parameters can be set up simply by writing previously saved parameters from the control panel.

Note: It is necessary to batch-read the parameters using the control panel beforehand.

Environment Friendly

Soft-PMW control

Mitsubishi's Soft-PWM switching system keeps noise to a minimum.

_ow-noise operation

• A higher carrier frequency can be used to reduce operating noise.

EMC filter (400V-class)

• Use the optional EMC filter to help to comply with EMC standards.

Power-supply harmonics regulations compliant.

• It is also possible to connect a high-power factor regenerative converter (FR-HC) that conforms to Japanese harmonic guidelines (conversion coefficient: K5=0).

Exceptional Performance

Expandability

- Various I/Os are available, including analog signals, digital signals, and network connections.
- Up to three option cards can be mounted internally.
- Direct communications with a PLC is possible, e.g. Control & Communication Link (CC-Link).
 - Accommodates PLC X/Y instructions for easy programming.
 - Note: The TO and FROM commands are necessary for part of the PLC programming.

Compliance with 240V power supplies (maximum 22K) and 480V power supplies as standard.

Sink/Source Logic is selectable. (Using jumper on terminal block).

The FR-PU04 LCD parameter unit with long-life backlight display is available as an option.

 The unit features Mitsubishi's original direct input method which uses the ten-key pad. Eight different languages are available on one unit.

Compliance with major international standards.

- All units comply with UL, CSA* and EN standards (low-voltage directive) as standard.
 - * In order to obtain CSA standards approval at UL, the cUL mark is applied.
- NEMA1 compliance is standard up to 22K.
- The optional FR-PU04 parameter unit can handle eight languages: Japanese, English, German, French, Spanish, Italian, Swedish and Finnish

 $C(\mathbf{M})$

Compliance with major international communications standards.

- North America DeviceNetTM, Modbus plus
- Europe Profibus DP

Model Configuration

Model

F	R	- F540] -	3.7	7K
	Model	Voltage Class]	Model	Applicable Motor Capacity
	F520	200V class 55K or less		0.75K–	Indiantan annanity in KM
	F540	400V class 55K or less		375K	Indicates capacity in kW
	F520L	200V class 75K or more			
	F540L	400V class 75K or more			

Model Configuration

Applicable Motor Capacity (kW)	Power Sup	ply Voltage
	200V class	400V class
0.75	FR-F520-0.75K	FR-F540-0.75K
1.5	FR-F520-1.5K	FR-F540-1.5K
2.2	FR-F520-2.2K	FR-F540-2.2K
3.7	FR-F520-3.7K	FR-F540-3.7K
5.5	FR-F520-5.5K	FR-F540-5.5K
7.5	FR-F520-7.5K	FR-F540-7.5K
11	FR-F520-11K	FR-F540-11K
15	FR-F520-15K	FR-F540-15K
18.5	FR-F520-18.5K	FR-F540-18.5K
22	FR-F520-22K	FR-F540-22K
30	FR-F520-30K	FR-F540-30K
37	FR-F520-37K	FR-F540-37K
45	FR-F520-45K	FR-F540-45K
55	FR-F520-55K	FR-F540-55K
75	FR-F520L-75K	FR-F540L-75K
90	FR-F520L-90K	FR-F540L-90K
110	FR-F520L-110K	FR-F540L-110K
132	-	FR-F540L-132K
160	-	FR-F540L-160K
185	-	FR-F540L-185K
220	-	FR-F540L-220K
280	-	FR-F540L-280K
375	-	FR-F540L-375K

Units with applicable motors with capacities of 75kW and over are not covered in this catalog.

Standard Specifications

Ratings

200V class

Model FR-F520-				1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K
	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55		
	Rated capacity (kVA) (Note 2)			2.7	3.7	5.7	8.8	11.8	17.1	22.1	26.7	32.4	43.4	53.3	64.8	80.8
	Rated cu	irrent (A)	4.1	7	9.6	15	23	31	45	58	70	85	114	140	170	212
Output	Overload cu	urrent rating (Note 3)		I				120% f	or 60 sec.	, 150% fo	r 0.5 sec.					
	Volt	age (Note 4)			3-phase	200-22	0V 50Hz,	200–240	V 60Hz				3-phase 2	200-220V 50	0Hz, 200–23	30V 60Hz
	Regenerative	Max. value/time							15%	(Note 5)						
	braking torque	Tolerable working rate							Continuo	US (Note 5)	1					
	Rated input, AC v	oltage, frequency		3-phase 200-220V 50Hz, 200-240V 60Hz 3-phase 200-220V 50Hz, 200-230V 60Hz												
Power	Tolerable AC vo	Itage fluctuation	170-242V 50Hz, 170-264V 60Hz 170-242V 50Hz, 170-253V 60Hz													
supply	Tolerable freque	ency fluctuation							±5	i%						
	(Note 6) Power facility	No DC reactor	2.1	4.0	4.8	8.0	11.5	16	20	27	32	41	52	65	79	99
	capacity (kVÅ)	DC reactor present	1.2	2.6	3.3	5.0	8.1	10	16	19	24	31	41	50	61	74
	Protective structure	(JEM1030)			Ful	ly enclose	ed type (IF	20, NEM	A1)					Open typ	be (IP00)	
	Cooling method								Fo	rced cooli	ng					
	Approx. weight kg (lb)			3.5 (7.7)	3.5 (7.7)	3.5 (7.7)	6.0 (13.2)	6.0 (13.2)	8.0 (17.6)	13.0 (28.7)	13.0 (28.7)	13.0 (28.7)	21.0 (46.3)	30.0 (66.1)	40.0 (88.2)	55.0 (121.3)

400V class

	Model FR-F540-				2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K
	Applicable motor cap	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	
	Rated cap	acity (kVA) (Note 2)	1.5	2.7	3.7	5.7	8.8	12.2	17.5	22.1	26.7	32.8	43.4	53.3	64.8	80.8
	Rated ci	urrent (A)	2.0	3.5	4.8	7.5	11.5	16	23	29	35	43	57	70	85	106
Output	Overload c	urrent rating (Note 3)	120% for 60 sec., 150% for 0.5 sec. (Inverse time characteristics)													
	Vol	tage (Note 4)						3-phas	e 380–48	30V 50Hz	2/60Hz					
	Regenerative	Max. value/time							15%	(Note 5)						
	braking torque	Tolerable working rate		Continuous ^(Note 5)												
	Rated input, AC	voltage, frequency	3-phase 380-480V 50Hz/60Hz													
Power	Tolerable AC vo	oltage fluctuation						32	3–528V	50Hz/60H	lz					
supply	Tolerable frequ	ency fluctuation							± {	5%						
	(Note 6) Power facility	No DC reactor	2.1	4.0	4.8	8.0	11.5	16	20	27	32	41	52	65	79	99
	capacity (kVA)	DC reactor present	1.2	2.6	3.3	5.0	8.1	10	16	19	24	31	41	50	61	74
	Protective structure	(JEM1030)				Fully en	closed typ	oe (IP20, I	NEMA1)					Open ty	pe (IP00)	
	Cooling method			ooling					F	orced coc	oling					
	Approx. weight kg (lb)			3.0 (6.6)	3.0 (6.6)	3.0 (6.6)	5.5 (12.1)	6.0 (13.2)	7.0 (15.4)	13.0 (28.7)	13.0 (28.7)	13.0 (28.7)	24.0 (52.9)	24.0 (52.9)	35.0 (77.2)	36.0 (79.4)

Notes:

^{1. &}quot;Applicable motor capacity" refers to the maximum applicable capacity when using a 4-pole standard Mitsubishi motor.

^{2.} The rated output capacity is 220V for the 200V class, and 440V for the 400V class.

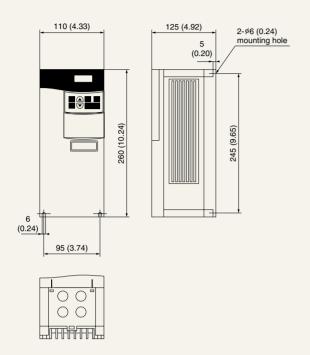
^{3.} The percentage given for the overload current rating indicates the ratio with respect to the inverter's rated output current. In the case of repeated use, it is essential to wait until the inverter and the motor have cooled to below the temperature for 100% load.

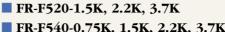
^{4.} The maximum output voltage may not exceed the power supply voltage, and can be set at any value below the power supply voltage.

^{5.} Indicates the average torque for decelerating to a stop from 60Hz. Changes according to motor loss.

^{6.} Power capacity differs according to the power supply impedance value (including the input reactor or wire values).

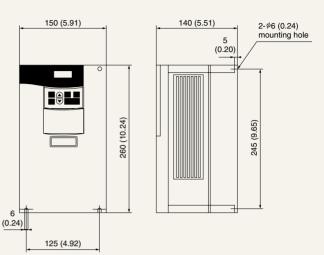
Common Specifications

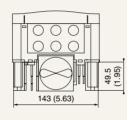

		Ocartaci	Mastle a al		
			Method	Soft-PWM control, high-carrier frequency PWM control (V/F control)/optimum excitation control.	
		Output freq	uency range	0.5 to 120Hz	
su		requency rol resolution	Analog input	0.015Hz/60Hz (Terminal No. 2 input: 12 bit/0 to 10V, 11 bit/0 to 5V; Terminal No. 1 input: 12 bit/-10 to +10V, 11 bit/-5 to +	5V)
catio			Digital input	0.01Hz	
pecifi			y accuracy	Within ±0.2% of max. output frequency (25°C (53°F)±10°C (±21.2°F))/during analog input: within 0.01% of set output frequency	v during digital input
Control Specifications	Vo		cy characteristics	Any base frequency setting possible between 0 and 120Hz; constant torque or variable torque pattern selection possible.	
Con			e boost	Manual or automatic torque boost	
	Acce	leration/decel	eration time setting	0 to 3600 sec. (individual setting for acceleration/deceleration possible), linear or S-curve mode	
			raking	Operation frequency (0 to 120Hz), operation time (0 to 10 sec.), operation voltage (0 to 30%) variable	
	S	tall preventior	operation level	Operation current level setting possible (0 to 150% variable), enable/disable selection	
		requency	Analog input	DC0 to 5V, 0 to 10V, 0 to ±10V, 4 to 20mA	
	Set	ting signal	Digital input	Input from control panel, parameter unit; BCD 3-digit or 12-digit binary (using option FR-A5AX)	
		Starting	g signal	Individual selection of forward run, reverse run; starting signal self-hold input (3-wire input) selective	
		Multi-s	peed selection	Up to 7 set speeds (each speed can be set between 0 and 120Hz; speed can be changed via control panel or parameter unit during operation)	
		2nd ac	cel/decel time	0 to 3600 sec. (max. of two individual accelerations/decelerations can be set)	
		JOG ope	eration selection	JOG operation mode selection terminal provided (Note 1)	
		Current	input selection	Select input of frequency setting signal 4 to 20 mA DC (terminal No. 4)	
			eous power failure art selection	Restarts operation after halt in operation due to power failure.	Select using
	Input	Externa	al thermal input	Thermal contact input to when stopping inverter an externally mounted thermal relay.	Pr.180 to Pr.186
tions	signal	FR-H	C connection	Enables input of inverter operations and instantaneous power failure interruption detection.	
cifica		External b	raking start signal	External input of DC braking start.	
Operation Specifications		PID co	ntrol selection	Select PID control execution.	
ratior		PU external	operation switching	Enables external switching between PU and external operation.	
Ope		PU operatio	n external interlock	Enables external interlock switching between PU and operation.	
		O	utput stop	Instant cutoff of inverter output (frequency, voltage)	
		E	rror reset	Reset of protection operation hold state	
		Operatior	1 functions	Upper/lower limit frequency setting, frequency jump operation, external thermal input selection, reverse polarity operation power failure restart operation, commercial power supply inverter switch-over function, forward run/reverse run preventi selection, PID control, computer link operation (RS-485)	
	Out-	Ope	ration status	Five types can be selected from: inverter running, frequency reached, instantaneous power failure (undervoltage), frequ frequency detection, in PU operation, overload warning, regenerative brake pre-alarm, electronic thermal relay pre-alarm, ze PID lower limit, PID upper limit, PID forward run, PID reverse run, commercial power supply-inverter switchover MC 1, 2, 3, trouble, and fin overheat re-alarm. Open collector output.	ro current detection
	put signal	Error	(inverter trip)	Relay output - contactor (AC 230V 0.3A, DC 30V 0.3A); open collector - alarm code (4-bit) output	
	orginar	F	or meter	One type can be selected from: output frequency, motor current (constant or peak value), output voltage, frequency sett speed, converter output voltage (constant or peak value), electronic thermal relay load rate, input power, output power and Pulse train output (1440 pulse/sec./full scale) or analog output (0 to 10 VDC).	
	FR-D contr	ol panel or	Operation status	Select from output frequency, motor current (constant or peak value), output voltage, frequency setting value, operation converter output voltage (constant or peak value), electronic thermal relay load rate, input power, output power, load meter ON time, actual operation time, cumulative power and motor load rate.	
Display	FR-P parar	2004 meter unit	Error details	Details of errors are displayed when the protective function activates. Details of up to eight errors are saved. (Only four errors are displayed	d on the control panel.
Dis	Addit	tional	Operation status	Input terminal signal status, output terminal signal status, option mounting status, terminal assignment status.	
	displa FR-P	ays only on 2004	Error details	Output voltage, current, frequency and cumulative power ON time before protective function activates	
	parar	meter unit	Interactive	Operation guide and troubleshooting with help function	
	Protec	ctive and warr	ing functions	Overcurrent cut-off (during acceleration, deceleration, constant speed), regenerative overvoltage cut-off, undervoltage, instanta overload cut-off (electronic thermal relay), ground fault overcurrent, output short circuit, stall prevention, overload warning, fin over option error, parameter error, PU disconnected number of retries exceeded, output phase loss, CPU error, DC 24V power output panel power short circuit.	rheating, fan trouble
		Ambient te	emperature	-10°C (-21.2°F) to +50°C (+106°F) (no freezing) (-10°C (-21.2°F) to +40°C (+84.8°F) using fully enclosed structure specifications attac	chment (FR-A5CV))
ent		Ambient	humidity	90%RH or less (no condensation)	
Environment		Storage te	emperature (Note 2)	-20°C (+42.4°F) to +65°C (+137.8°F)	
Envi		Atmos	sphere	Indoors (no corrosive gases, flammable gases, oil mist or dust)	
		Altitude ar	d vibration	Max. 1000 m (3280.8 ft) above sea level, max. 5.9 m (19.03 ft)/s² {0.6G} (JIS C 0911 compliance)	


Notes: 1. JOG operation is possible with the control panel and parameter unit. 2. Temperatures to which the units can be exposed for a short time, such as during transportation.

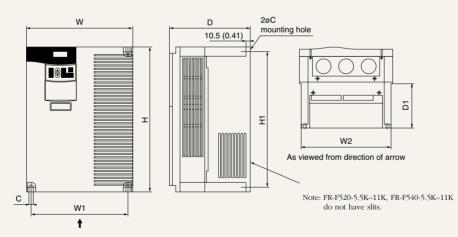
5

External Dimension Diagrams


FR-F520-0.75K



Units: mm (inch)

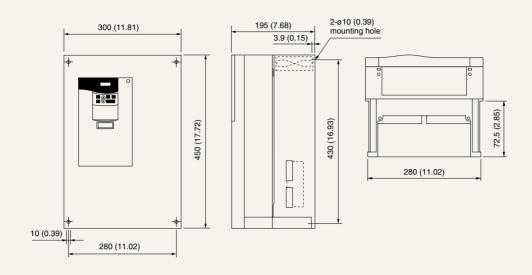

FR-F540-0.75K, **1.5K**, **2.2K**, **3.7K**

Note: FR-F540-0.75K-1.5K do not have cooling fans.

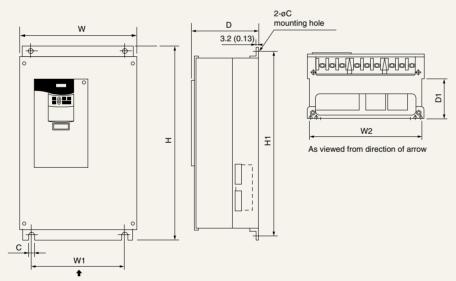
FR-F520-5.5K, 7.5K, 11K, 15K, 18.5K, 22K FR-F540-5.5K, 7.5K, 11K, 15K, 18.5K, 22K

• 200V class

Inverter type	W	W1	W2	Н	H1	D	D1	С
FR-F520-5.5K/7.5K	220 (8.66)	195 (7.68)	211 (8.31)	260 (10.24)	245 (9.65)	170 (6.69)	86.5 (3.41)	6 (0.24)
FR-F520-11K	220 (8.66)	195 (7.68)	211 (8.31)	300 (11.81)	285 (11.22)	190 (7.48)	101.5 (4.00)	6 (0.24)
FR-F520-15K/18.5K/22K	250 (9.84)	230 (9.06)	242 (9.53)	400 (15.75)	380 (14.96)	190 (7.48)	101.5 (4.00)	10 (0.39)


• 400V class

Inverter type	W	W1	W2	Н	H1	D	D1	С
FR-F540-5.5K/7.5K	220 (8.66)	195 (7.68)	211 (8.31)	260 (10.24)	245 (9.65)	170 (6.69)	86.5 (3.41)	6 (0.24)
FR-F540-11K	220 (8.66)	195 (7.68)	211 (8.31)	260 (10.24)	245 (9.65)	190 (7.48)	106.5 (4.19)	6 (0.24)
FR-F540-15K/18.5K/22K	250 (9.84)	230 (9.06)	242 (9.53)	400 (15.75)	380 (14.96)	190 (7.48)	101.5 (4.00)	10 (0.39)


External Dimension Diagrams

FR-F520-30K

Units: mm (inch)

FR-F520-37K, 45K, 55K FR-F540-30K, 37K, 45K, 55K

• 200V class

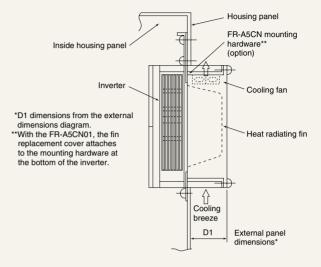
Inverter type	W	W1	W2	Н	H1	D	D1	С
FR-F520-37K	340 (13.39)	270 (10.63)	320 (12.60)	550 (21.65)	530 (20.87)	195 (7.68)	71.5 (2.81)	10 (0.39)
FR-F520-45K	450 (17.72)	380 (14.96)	430 (16.93)	550 (21.65)	525 (20.67)	250 (9.84)	154 (6.06)	12 (0.47)
FR-F520-55K	480 (18.90)	410 (16.14)	460 (18.11)	700 (27.56)	675 (26.57)	250 (9.84)	154 (6.06)	12 (0.47)

• 400V class

Inverter type	W	W1	W2	Н	H1	D	D1	С
FR-F540-30K/37K	340 (13.39)	270 (10.63)	320 (12.60)	550 (21.65)	530 (20.87)	195 (7.68)	71.5 (2.81)	10 (0.39)
FR-F540-45K/55K	450 (17.72)	380 (14.96)	430 (16.93)	550 (21.65)	525 (20.67)	250 (9.84)	154 (6.06)	12 (0.47)

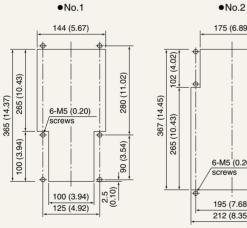
Note: The main circuit terminal size for the FR-540-37K has been reduced to one rank smaller than the FR-A140E-37K. (M8, M6)

Making the Housing Panel More Compact

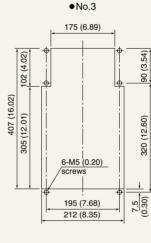

When the inverter is being used inside a housing panel, the heat generated inside the panel can be greatly reduced by projecting the inverter's heat radiating fin outside of the panel. This mounting method is recommended when trying to reduce the size of a completely sealed housing panel.

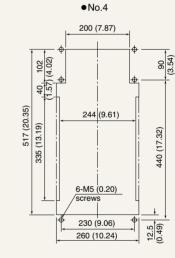
Notes

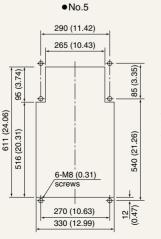
When mounting, use mounting attachment FR-A5CN (sold separately) (for models 1.5K–55K).

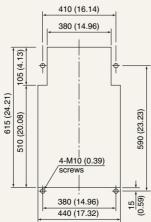

2. The fin height is greater than the fin height of the FR-A100 series.

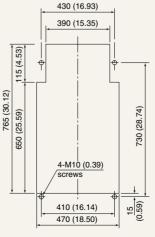
Inve	erter	Attac	nment
200V class	400V class	Model	Drawing No.
FR-F520-1.5-3.7K	FR-F540-0.75K-3.7K	FR-A5CN01	1
FR-F520-5.5K/7.5K	FR-F540-5.5K/7.5K	FR-A5CN02	2
FR-F520-11K	—	FR-A5CN03	3
—	FR-F540-11K	FR-ASCINUS	2
FR-F520-15K-22K	FR-F540-15K-22K	FR-A5CN04	4
FR-F520-30K	—	FR-A5CN08	8
FR-F520-37K	FR-F540-30K/37K	FR-A5CN05	5
FR-F520-45K	FR-F540-45K/55K	FR-A5CN06	6
FR-F520-55K	_	FR-A5CN07	7

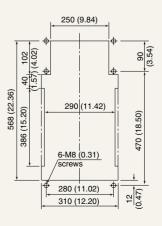



Panel Cut-out Dimensions (When Using FR-A5CN)


Units: mm (inch)

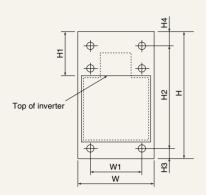


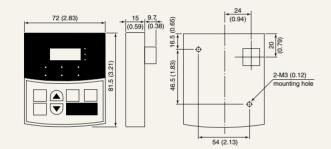




•No.6

•No.7

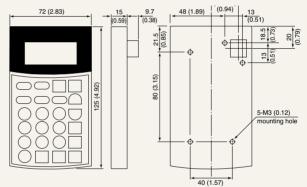



Dimensions After Mounting of Attachment (When Using FR-A5CN)

Units: mm (inch)

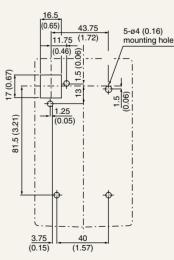

Model	W	Н	H1	W1	H2	H3	H4
FR-A5CN01	150	389.5	18	125	370	11.5	8
	(5.91)	(15.33)	(0.71)	(4.92)	(14.57)	(0.45)	(0.31)
FR-A5CN02	245	408.5	116.5	195	370	22	16.5
	(9.65)	(16.08)	(4.59)	(7.68)	(14.57)	(0.87)	(0.65)
FR-A5CN03	245	448.5	116.5	195	410	22	16.5
	(9.65)	(17.66)	(4.59)	(7.68)	(16.14)	(0.87)	(0.65)
FR-A5CN04	280	554	122	230	530	12.5	11.5
	(11.02)	(21.81)	(4.80)	(9.06)	(20.87)	(0.49)	(0.45)
FR-A5CN05	340	645	130	270	540	10	10
	(13.39)	(25.39)	(5.12)	(10.63)	(21.26)	(0.39)	(0.39)
FR-A5CN06	460	650	145	380	590	10	50
	(18.11)	(25.59)	(5.71)	(14.96)	(23.23)	(0.39)	(1.97)
FR-A5CN07	490	800	145	410	730	10	60
	(19.29)	(31.50)	(5.71)	(16.14)	(28.74)	(0.39)	(2.36)
FR-A5CN08	330	604	122	280	580	12	12
	(12.99)	(23.78)	(4.80)	(11.02)	(22.83)	(0.47)	(0.47)

Control Panel FR-DU04



Please use an attachment screw length that does not exceed the effective depth of the attachment screw mount.

Panel cut-out dimensions

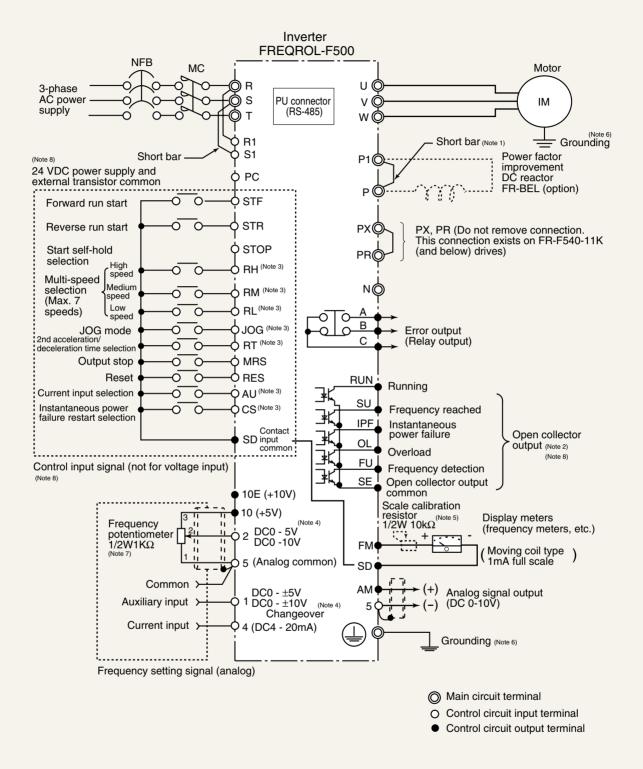


Parameter Unit (option) FR-PU04

Please use an attachment screw length that does not exceed the effective depth of the attachment screw mount.

Panel cut-out dimensions

PU connector pin arrangement [Main inverter unit (receptacle side), as seen from the front]


8	٦
(1)	

SG (5) SDA P5S (6) RDB (3) RDA (7) SG (4) SDB (6) P5S

Notes:

- 1. Please do not make connections between the PU connector and computer LAN boards, fax modem sockets, or modular connectors for telephones. Since their electrical specifications are different, doing so may damage the unit.
- 2. Pins (2) and (8) (P5S) are the power supplies for the control panel and the parameter unit. Please do not use them during communications via the RS-485 interface.

Terminal Connection Diagram

Notes

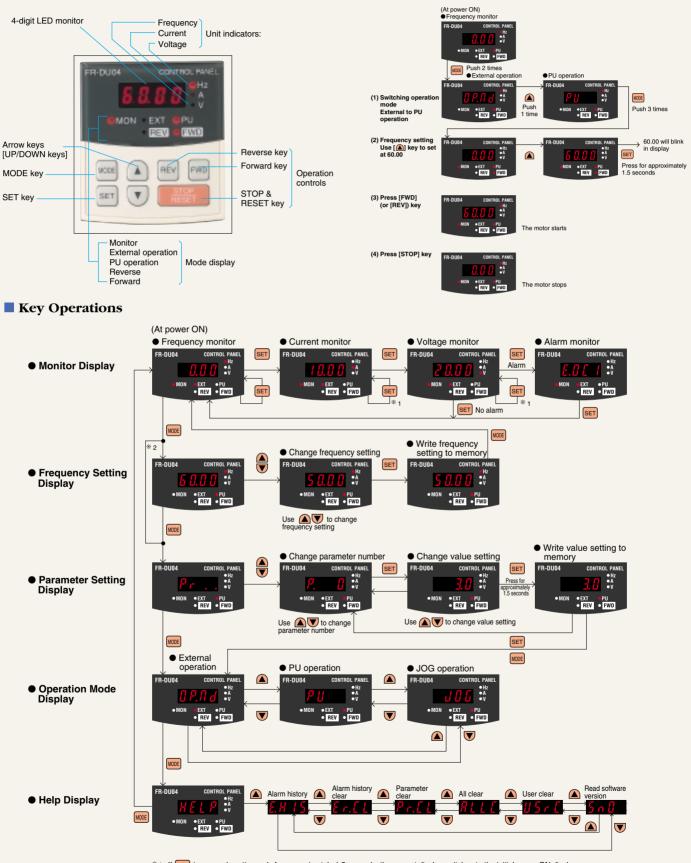
- (1) Remove this short bar when using the FR-BEL.
- (2) These output terminals can output error alarm codes, or 19 types of function can be individually assigned with Pr.190 through to Pr.195.
- (3) This input terminal can be individually assigned 14 types of function with Pr.180 through to Pr.186.
- (4) The input signal can be changed with Pr.73.

- (5) Not required when the meter is calibrated with the control panel.
- (6) Always ground the inverter and motor.
- (7) $2W1k\Omega$ is recommended when the frequency setting is changed frequently.
- (8) This connection diagram is for when the control circuit uses sink logic.

Explanation of Terminal Specification

Ту	pe	Terminal symbol	Terminal name		Explanation				
		R, S, T	AC power supply input	Connected to the commercial power s	Connected to the commercial power supply.				
		U, V, W	Inverter output	Connects the 3-phase squirrel cage n	notor.				
		R1, S1	Control circuit power supply		onnected to the AC power supply terminals R and S. To hold the error display or error output, remove the short bar on the terminal ock, and input a power supply to this terminal from an external source.				
Main Circuit		P, N	Brake unit connection	onnect the optional FR-BU type brake unit or high-power factor converter (FR-HC).					
		P, P1	Power factor improvement DC reactor connection	Remove the short bar between termin	move the short bar between terminals P and P1, and connect the optional power factor improvement DC reactor (FR-BEL).				
		PR, PX	Built-in brake circuit connection	The built-in brake circuit is enabled w	hen the short bar is connected between terminals PX and PR. (Defau	It setting)			
		4	Grounding	nis is for grounding the inverter chassis. Always ground the inverter.					
		STF	Forward run start		erves as the forward run command when terminals STF-SD (Note 2) are ON. In the programmed peration mode, serves as programmed operations start signal. (Start at ON, stop at OFF)				
		STR	Reverse run start	Serves as the reverse run command	when terminals STR-SD (Note 2) are ON.	serve as the stop command.			
		STOP	Start self-hold selection	The self-hold of the start signal is sele	ected when terminals STOP-SD (Note 2) are ON.				
		RH, RM, RL	Multi-speed selection	The multi-speed can be selected with RM and RL-SD (Note 2).	a combination of ON/OFF commands between the terminals RH,				
als		JOG	JOG mode selection	JOG operation is selected when term with the start signal (STF or STR), or	inals JOG-SD (Note 2) are ON, and JOG operation can be started control panel.	The terminal function changes according to the input terminal function			
Control Circuit, Input Signals	act	RT	2nd acceleration/ deceleration time selection		me is selected when terminals RT-SD (Note $^{2)}$ are ON. If other 2nd t" or "2nd V/F (base frequency)" are set, these functions will be N.	selection (Pr.180 through Pr.186). Other signal names: OH, X10, X11, X12, X13,			
Circuit,	Contact	AU	Current input selection	Operation is possible with the frequer are ON.	ncy setting signal 4 to 20 mA DC only when terminals AU-SD $^{(Note \ 2)}$	X14, X16 (Please refer to page 21.)			
Control		CS	Instantaneous power failure restart selection		the motor will restart automatically when the power is restored. t must be enabled. (Restart is disabled as the default setting.)				
		MRS	Output stop	Inverter output stops when terminals stopping the motor with a magnetic bi	MRS-SD $^{\rm (Note\ 2)}$ are ON (for 20 ms or more). This is used to cut off rake.	the inverter output when			
		RES	Reset	This is used to cancel the hold state v and then turn OFF.	when the protection circuit activates. Turn ON terminals RES-SD $^{(Note}$	²⁾ for 0.1 sec., or more,			
		SD	Contact input common (sink)	This is the common terminal for the terminal FM and for the contact input terminal during sink logic. It is insulated from the control circuit's common terminals.					
		PC	DC 24V power supply, external transistor common and contact input common (source)	When connecting a transistor output supplied current can be prevented by	(open collector output) such as a programmable logic controller (PLC connecting the external power common for the transistor output to the pply. When source logic is selected, this is the common terminal for the	his terminal. It is possible			
		10E	Frequency setting power	DC 10V tolerable load current 10 mA	DC 10V tolerable load current 10 mA When connecting a potentiometer at the default setting, connect to				
		10	supply	DC 5V tolerable load current 10 mA	terminal 10E, change the input specifications for terminal 2.				
bc	setting	2	Frequency setting (voltage)		When 0 to DC 5V (or 0 to 10V) is input, the max. output frequency is reached at 5 V (10 V). The input and output are proportion The inputs 0 to DC 5V (default setting) and 0 to 10 VDC are changed using Pr. 73. Input resistance 10 Ω max., tolerable voltag				
Analog	Frequency :	4	Frequency setting (current signal)		nax, output frequency is reached at 20 mA. The input and output are AU-SD (Note 2) are ON. The input resistance 250 Ω max., tolerable cu				
	Fre	Auxiliary frequency setting			When 0 to DC ±5V or 0 to ±10V is input, this signal is added to the terminal 2 or 4 frequency setting signal. The inputs 0 to DC ±5V or 0 to ±10 V (default setting) are changed using Pr.73. Input resistance 10 Ω max., tolerable voltage ±20V				
		5	Frequency setting common		requency setting signal (terminal 2, 1 or 4) and analog output termina nmon terminals. Do not ground this common.	I AM. This terminal is not			
	Cont- act	A,B,C	Error output	stopped. AC 200V 0.3 A, DC 30V 0.3A	hat the inverter's protection circuit has functioned and the output has . When an error occurs, there is non-continuity between B-C (continuity are is continuity between B-C (non-continuity between A-C).	The terminal function			
nal		RUN	Inverter running		utput frequency is higher than the starting frequency (default: 0.5 Hz, in stopped or during DC braking (Note 1). Tolerable load: DC 24V 0.1 A	changes according to the output terminal function selection (Pr.190 to			
Control Circuit Output Signal	collector	SU	Frequency reached	the H level is set during acceleration/d	uency is within $\pm 10\%$ (default, changeable) of the set frequency, and eceleration and when stopped (Note 1). Tolerable load: 24V DC 0.1A	Pr.195). Other signal names: FU2			
it Ou		OL	Overload warning	The L level is output when stall preve set when stall prevention is canceled	ntion is activated by the stall prevention function, and the H level is (Note 1). Tolerable load: DC 24V 0.1A	THP, PU, RY, Y13, FDN, FUP, RL, MC1–3, FAN,			
Circu	Open	IPF	Instantaneous power failure		aneous power failure or undervoltage protection has functioned	FIN, LF (Please refer to page 21.)			
trol (FU	Frequency detection		frequency is higher than the set detection frequency, and the H level rable load. DC 24V 0.14				
Cor		SE	Open collector output common	· · · · · · · · · · · · · · · · · · ·	rable load: DC 24V 0.1A erminals RUN, SU, OL, IPF and FU. It is insulated from the control circ	uit's common terminals.			
	Pulse	FM	For display meter	One of 13 monitor items, such as output	Default output item: frequency; tolerable load current 1 mA 1440 put				
		AM	Analog signal output	frequency, is selected and output. The output signal is proportional to the size	Default output item: frequency; output signal 0 to DC 10V, tolerable lo				
Commu-	Analog RS-	AIVI			ed out using the control panel connector.				
ications	485	-	PU connector	Compliance standards: EIA Standard Total length: 500 m (1640.4 ft).	RS-485. Transmission format: multidrop link method. Communication	on rate: max. 19200 baud.			

Notes:

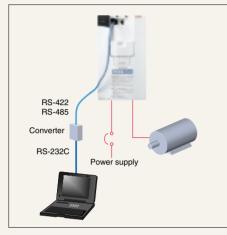

1. The L level indicates when it is in the OFF state (non-continuity state). The H level indicates when it is in the OFF state (non-continuity state).

2. When using source logic, the terminal PC will be the common terminal, not SD.

PU Operation (Example: 60Hz operation)

Control Panel FR-DU04

External View


* 1 If SET is pressed continuously for approximately 1.5 seconds, the current display switches to the initial power ON display.
 * 2 During external operations, the frequency setting display does not appear.

Inverter Setup Software and Networks

FR-SW0-SETUP-WE

(Windows 3.1*, Windows 95* compatible)

Inverter setup software provides an amenable inverter operating environment. Use it as a support tool for everything from inverter startup to maintenance. It allows you to efficiently set parameters and monitor operation in Windows*.

*"Windows" is a registered trademark of Microsoft Corporation.

Networks

Functions

1. Set and edit parameters

Four systems provided: Overall list system, function list system, individual system, simplified setup system.

2. Monitor

Four systems provided: data display system, meter display system, waveform display system and alarm history system.

3. Test operation

Test operation function incorporated.

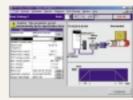
4. Diagnosis

Interior self-diagnosis and failure diagnosis systems incorporated.

5. System settings

System setup incorporated.

6. Files


Saving to hard-disk/floppy disk, readout and printout functions incorporated.

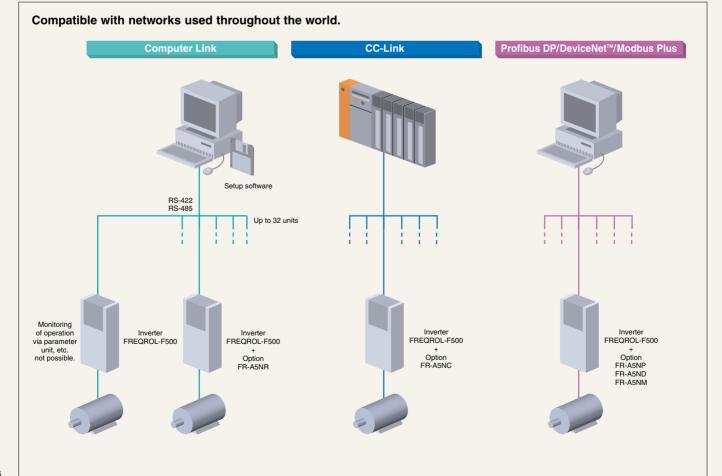
7. Windows

Multi-display screen function incorporated.

8. Help

Operation procedures displayed on-screen.

Sample screen showing simple parameter setting


Sample screen showing monitoring and meter displays

Sample screen showing test operation

Sample screen showing diagnostic display

Simple Mode Parameters (Modes are for setting parameters for high frequency use only; default setting at time of shipment.)

Function	Pr. No.	Name	Setting	range	Minimum setting	Default	setting
	0	Torque boost	0-3	30%	0.1%	6%/4%/3%	/2% (Note 1
	1	Maximum frequency	0-1	20Hz	0.01Hz	120	OHz
-	2	Minimum frequency	0-1	20Hz	0.01Hz	01	Hz
-	3	Base frequency	0-1	20Hz	0.01Hz	60	Hz
	4	Multi-speed setting (high speed)		20Hz	0.01Hz		Hz
Basic functions	5	Multi-speed setting (middle speed)		20Hz	0.01Hz		Hz
	6	Multi-speed setting (low speed)		20Hz	0.01Hz		Hz
-	7	Acceleration time		:./0–360 sec.	0.1 sec./0.01 sec.	5 sec./15 s	
	8	Deceleration time		:./0-360 sec.	0.1 sec./0.01 sec.	10 sec./30	
-	9	Electronic thermal O/L relay		500A	0.01A	Rated outp	
	10	DC injection brake operation frequency		Hz, 9999	0.01Hz		Hz
-	10	DC injection brake operation frequency		ec., 8888	0.1 sec.		Sec.
-	12	DC injection brake voltage		30%	0.1%		(Note 2)
Standard operation functions	12			50% 60Hz			
-		Starting frequency			0.01Hz		5Hz
-	14	Load pattern selection		, 1	1		1
	19	Base frequency voltage		8888, 9999	0.1V		99
	52	DU/PU main display data selection	0, 5, 6, 8, 10–14,	17, 20, 23–25, 100	1		0
	53	Parameter for FR-PU04			ction manual for full details		
Display functions	54	FM terminal function selection		10–14, 17, 21	1		1
	55	Frequency monitor reference	-	20Hz	0.01Hz		Hz
	56	Current monitor reference	0-5	500A	0.01A	Rated outp	out curren
Restart	57	Restart coasting time	0, 0.1–5	sec., 9999	0.1 sec.	99	99
nesian	58	Restart cushion time	0-60) sec.	0.1 sec.	1.0	sec.
	60	Intelligent mode selection (Note 5)	0, 3,	4, 9	1	()
	65	Retry selection	0-	-5	1	(C
	66	Stall prevention operation reduction starting frequency (Note 5)	0–120Hz		0.01Hz	60	Hz
	67	Number of retries at alarm occurrence	0–10, 101–110		1	()
	68	Retry waiting time	0-10 sec.		0.1 sec.	1 s	ec.
	69	Retry count display erasure	0		_	()
-	71	Applied motor (Note 5)	0, 1, 2		1)
Operation selection functions	72	PWM frequency selection	0–15		1		2
	73	0 - 5V, 0 - 10V selection	0-5, -		1		1
-	74	Filter time constant selection	0-0,		1		1
	75	Reset selection/PU disconnected/PU stop selection	0-3, -		1		4
	75				1		+)
	78	Alarm code output selection Parameter write disable selection	0, 1, 2		1)
-							-
-	78	Reverse rotation prevention selection	0, 1, 2		1)
	79	Operation mode selection (Note 5)			1)
Supplementary functions	160	User group read selection		11, 9999	1		99
_	180	RL terminal function selection (Note 5)	0–99,		1		0
_	181	RM terminal function selection (Note 5)	0–99,		1		1
-	182	RH terminal function selection (Note 5)	0–99,	9999	1		2
_	183	RT terminal function selection (Note 5)	0–99,	9999	1		3
	184	AU terminal function selection (Note 5)	0-99,	9999	1		4
	185	JOG terminal function selection (Note 5)	0–99,	9999	1	ę	5
Terminal function selection	186	CS terminal function selection (Note 5)	0–99,	9999	1	(6
	190	RUN terminal function selection (Note 5)	0–199	, 9999	1	(0
	191	SU terminal function selection (Note 5)	0–199	, 9999	1		1
	192	IPF terminal function selection (Note 5)	0–199	, 9999	1	1	2
	193	OL terminal function selection (Note 5)	0–199	, 9999	1	:	3
-	194	FU terminal function selection (Note 5)	0–199	, 9999	1		4
-	195	A.B.C terminal function selection (Note 5)	0–199		1		19
	240	Soft-PWM setting	0,		1		1
Auxiliary functions	244	Cooling fan operation selection	0,		1		0
	900	FM terminal calibration			_		-
-	900	AM terminal calibration					
-			0 101/	1	I	1	011-
Calibration functions	902	Frequency setting voltage bias	0-10V	0-60Hz	0.01Hz	0V	0Hz
-	903	Frequency setting voltage gain	0-10V	1–120Hz	0.01Hz	5V	60Hz
-	904	Frequency setting current bias	0-20mA	0-60Hz	0.01Hz	4mA	0Hz
	905	Frequency setting current gain	0–20mA	1–120Hz	0.01Hz	20mA	60Hz
Supplementary functions	990	Buzzer control	0,	1	1	1	1
cappionional y functions	991	LCD contrast	0	63	1	5	3

Notes: 1. Setting values differ according to inverter capacity. The setting values are: (0.75K)/(1.5K–3.7K)/(5.5K, 7.5K)/(11K and over). 2. Setting values differ according to inverter capacity. The setting values are: (7.5K and below)/(11K and over). 3. The set values for the parameters in the shaded areas area capacity of the altered during operations even if Pr.77 (Parameter write disable) is set to 0 (default setting). 4. Reading and writing are possible when Pr.29=3. 5. Even if Pr.77 (Parameter write disable) is set to 2, the set value cannot be changed during operations.

Standard Mode Parameters

(When modes other than Simple mode parameters are required, the standard mode parameters can also be used by changing the user group readout selection (Pr.160) to "0".)

Function	Pr. No.	Name
	15	JOG frequency
	16	JOG acceleration/deceleration time
	17	MRS input selection
	20	Acceleration/deceleration reference frequency
	21	Acceleration/deceleration time increments
	22	Stall prevention operation level
	23	Stall prevention operation at double speed (Note 5)
	24	Multi-speed setting (4 speed)
	25	Multi-speed setting (5 speed)
	26	Multi-speed setting (6 speed)
	27	Multi-speed setting (7 speed)
Standard operation	28	Multi-speed input compensation
functions	29	Acceleration/deceleration pattern
	30	Regenerative function selection
	31	Frequency jump 1A
	32	Frequency jump 1B
	33	
	33	Frequency jump 2A
		Frequency jump 2B
	35	Frequency jump 3A
	36	Frequency jump 3B
	37	Speed display
	38	Automatic torque boost
	39	Automatic torque boost operation start current
Output terminal	41	Up to frequency sensitivity
functions	42	Output frequency defection
	43	Output frequency defection during reverse rotation
	44	2nd acceleration/deceleration time
	45	2nd deceleration time
	46	2nd torque boost
2nd functions	47	2nd V/F (base frequency)
	48	2nd stall prevention operation current (Note 5)
	49	2nd stall prevention operation frequency (Note 5)
	50	2nd output frequency detection
	59	Remote setting function selection
Supplementary functions	61	Standard current
Supplementary functions	62	Standard value of current at time of acceleration
	63	Standard value of current at time of deceleration
	100	V/F1 (1st frequency) (Note 5)
	101	V/F1 (1st frequency voltage) (Note 5)
	102	V/F2 (2nd frequency) (Note 5)
	103	V/F2 (2nd frequency voltage) (Note 5)
5-point flexible	104	V/F3 (3rd frequency) (Note 5)
V/F characteristics	105	V/F3 (3rd frequency voltage) (Note 5)
	106	V/F4 (4th frequency) ^(Note 5)
	107	V/F4 (4th frequency voltage) (Note 5)
	108	V/F5 (5th frequency) (Note 5)
		V/F5 (5th frequency voltage) ^(Note 5)
Communications	109 117	Station number

Function	Pr. No.	Name
	119	Stop bit length/data length
	120	Parity check presence/absence
Communications	121	Number of communication retries
functions	122	Communication check time interval
	123	Wait time setting
	124	CR/LF absence/presence selection
	128	PID action selection
	129	PID proportional band
	130	PID integral time
PID control	131	Upper limit
	132	Lower limit
	133	PID action set point for PU operation
	134	PID differential time
	135	Commercial power supply switchover sequence output terminal selection (Note 5)
[136	MC switchover interlock time (Note 5)
Commercial power supply - switchover	137	Start waiting time (Note 5)
Switchover	138	Commercial power supply-inverter switchover selection at alarm occurrence (Note 5)
-	139	Automatic inverter-commercial power supply
	140	switch-over selection at alarm occurrence Backlash acceleration stopping frequency (Note 4)
-	141	Backlash acceleration stopping time (Note 4)
Backlash	142	Backlash deceleration stopping frequency (Note 4)
-	143	Backlash deceleration stopping time (Note 4)
	144	Speed setting switchover
Display	145	Switch parameter unit language
	148	Stall prevention level at 0 V input
Supplementary functions	140	Stall prevention level at 10 V input
	149	Zero current detection level
Current detection	152	Zero current detection level
	153	Voltage reduction selection during stall prevention operation
-	154	RT activated condition
Aunilians functions		
Auxiliary functions	156	Stall prevention operation selection
-	157	OL signal waiting time
	158	AM terminal function selection
-	162	Automatic restart after instantaneous failure selection
Restart	163	First cushion time for restart
-	164	First cushion voltage for restart
	165	Restart stall prevention operation level
Initial monitor	170	Watt-hour meter clear
	171	Actual operation hour meter clear
	173	User group 1 registration
User functions	174	User group 1 deletion
	175	User group 2 registration
	176	User group 2 deletion
	199	User initial value setting
Supplementary functions	251	Select output phase interruption protection
	252	Override bias
	253	Override gain
Integrated option	300	Parameters for inboard options

Note: Please refer to the product instruction manual for details of standard mode parameters.

Parameter Use List

Use	Parameter number required for setup	Use	Parameter number required for setup
Adjust acceleration/deceleration time and pattern	Pr.7, 8, 20, 21, 160	Operation timing of electromagnetic brake	Pr.42, 160, 190–195
Motor overheat protection	Pr.9, 71	Display revolution speed, etc.	Pr.37, 52, 53, 160
Select optimum output characteristic for load characteristic	Pr.3, 14, 19, 60	Prevent re-writing of function	Pr.77
For operation over 60Hz	Pr.903, 905	Prevent reverse operation	Pr.78
Adjust frequency setup signal and output	Pr.73, 74, 902–905	Switch to optimum excitation control operation	Pr.60
Correct scale of frequency indicator	Pr.54–56, 158, 160, 900, 901	Automatic restart after stoppage at time of an alarm	Pr.65, 67–69
Adjust digital frequency indicator	Pr.54–56, 900	Adjust motor output torque	Pr.0, 13, 38, 39, 160
For multi-speed operations	Pr.1, 2, 4–6, 15, 24–27, 160	Operation of communications with PC	Pr.117–124, 160
Instantaneous power failure restart operation	Pr.57, 58, 180–186	Operation of PID control	Pr.73, 79, 128–134, 160, 180–186, 190–195
Adjust braking operation	Pr.10–12	Commercial power supply and inverter switching operation	Pr.135–139, 160, 180–186, 190–195
Reduce noise output	Pr.72, 240	To extend cooling fan lifetime	Pr.244
Select inverter reset	Pr.75	Select alarm code output	Pr.76

Description of Parameters

Note: "Parameter" is sometimes abbreviated "Pr."

Pr.0 Setting Torque Boost

• The motor torque can be adjusted at low frequencies to match the load.

Notes: 1. The Default Setting (Torque Boost)

- 0.75K: 6%; 1.5-3.7K: 4%; 5.5K, 7.5K: 3%; more than 11K: 2%2. When using a motor that is dedicated for inverters (a constant torque
- motor), change the settings as follows: 0.75K: 6%; 1.5–3.7K: 4%; more than 5.5K: 2%

If Pr.71 is changed to the settings for using constant torque motors, but the default settings are not changed, the Pr.0 setting will switch to the above values.

Pr.1 Pr.2 Setting Maximum and Minimum Frequencies

Pr.1 Maximum frequency **Pr.2** Minimum frequency

• The output frequency can be clamped by maximum and minimum frequencies.

Pr. 3 Pr. 19 Setting the Base Frequency

Pr.3 Base frequency

Pr. 19 Base frequency voltage

- Any base frequency (the reference frequency at the motor's rated torque) can be set in the range of 0–120Hz to match the motor rating.
- Motors rated at below the inverter's power supply voltage are best used by setting Pr.19 (base frequency voltage). This is convenient when using, for example, a 400V rated motor with a 460V power supply.
- Note: When Pr.19 is set to 8888, the maximum output voltage is 95% of the power supply voltage. When Pr.19 is set to 9999 (the default setting), the maximum output voltage is the same as the power supply voltage.

Pr.4–6 Setting Multi-Speeds

Pr.4 Three-speed setting (high speed)

- **Pr.5** Three-speed setting (middle speed)
- **Pr.6** Three-speed setting (low speed)
- Speeds can be selected by simply switching the external contact signals (RH, RM and RL signals).
- Combining maximum frequency (Pr.1) and minimum frequency (Pr.2), JOG frequency (Pr.15) can be set to a maximum speed of 10.
- Notes: 1. Multi-speed settings have priority over analog input commands (between terminals 2 and 5 or 4 and 5).
 - 2. Multi-speed settings can be done during PU operation or external operation. 3. Please refer to the product instruction manual for details regarding Pr.15.

Pr.7 Pr.8 Setting Acceleration/ Deceleration Time

Pr.7 Acceleration time

Pr.8 Deceleration time

- Pr.7 (acceleration time) is the time required from reach the reference frequency of Pr.20 from 0Hz; Pr.8 (deceleration time) is the time required to reach 0Hz from the setting of Pr.20.
- Notes: 1. Set the gain (Pr.903 or Pr.905) for the output frequency of the frequency setup signal (analog).

2. Please refer to the product instruction manual regarding the details of Pr.20.

Pr.9 Electronic Thermal O/L Relay

- The setting for motor overheating protection can be set as the current value (A). Normally, the rated motor current for 50Hz is set. This provides the optimum protection characteristics for low speed operations, including when motor cooling power drops during low-speed operation.
- When 0A is set, the motor protection function does not engage. (The inverter's output transistor protection function does.)
- When using a Mitsubishi fixed torque motor, set Pr.71 (applied motor) to 1, select the 100% continuous torque characteristics at low speed, and set the motor's rated current in Pr.9 (electronic thermal O/L relay).
- The factory default setting is the inverter's rated output current, except for 0.75K inverters, for which it is 85% of the inverter's rated current.
- When several motors are operated simultaneously, install an external thermal relay on each motor.

Pr.10 Pr.11 Pr.12 DC Injection Brake Adjustment

Pr.10 DC injection brake operation frequency

Pr.11 DC injection brake operation time

Pr.12 DC injection brake voltage

- The stopping precision for positioning or similar operations can be adjusted to the load by setting the time for which the DC brake torque (voltage) is activated during stopping and the frequency at which the operation is started.
- Notes: 1. If the setting is Pr.10=9999 for the same frequency as that set by Pr.13 (Starting frequency), DC braking is operating.
 - If the setting is Pr.11=8888, DC braking is controlled by the external DC braking start signal (X13 signal). The terminal for X13 signal input is allocated by Pr.180–Pr.186 (Input Terminal Function Selection).
 Default Settings at Time of Shipment <DC braking voltage>
 - 5. Default Settings at time of sinplicit CPC braking voltage? Less than 7.5K: 4%; more than 11K: 2%. In the case of special inverter motor (constant torque motor), please change the parameter settings as follows: Less than 3.7K: 4%; more than 5.5K: 2%. Using the value set by the factory at the time of shipment, Pr.71 is set to that at the time of using a constant torque motor and the setup value of Pr.12 is switched to the above-mentioned value.

Pr. 13 Setting the Starting Frequency

• The frequency at startup can be set in the range 0-60Hz.

Pr. 14 Load Pattern Selection

• This allows you to select the optimum output characteristics (V/F characteristics) for your application and load characteristics.

Pr. 14 setting	Output characteristics
0	Constant torque load
1	Variable torque load (the default setting)

Pr.19 See the description of Pr.3

Pr. 52 Pr. 53 Pr. 54 Selecting Monitor Output Signal

Pr. 52 DU/PU main display data

Pr.54 FM terminal function selection

- Using the setup numbers listed in the following table, 20 various signals can be selected for the monitor and output signals.
- Pr.54 is the pulse line output FM terminal and Pr.158 is the analog AM terminal.
- Default settings at the time of shipment: Pr.52, 0; Pr.54, 1; Pr.158, 1.
- Please refer to the product instruction manual for details regarding Pr.158.

		Par	ameter set	ting	
Signal types	Display	Pr. 52	Pr. 54	Pr.158	Full-scale value of FM,
olgha (jpee	unit	DU LED	FM terminal	AM terminal	Level meter
No display	-	×	×	×	-
Output frequency	Hz	0/100	1	1	Pr.55
Output current	A	0/100	2	2	Pr.56
Output voltage	V	0/100	3	3	400V or 800V
Error display	-	0/100	×	×	-
Frequency setting	Hz	5	5	5	Pr.55
Operating speed	r	6	6	6	Value of Pr.55 changed by Pr.37 value
Converter output voltage	V	8	8	8	400V or 800V
Electronic thermal load ratio	%	10	10	10	Thermal operation level
Output current peak value	A	11	11	11	Pr. 56
Converter output voltage peak value	V	12	12	12	400V or 800V
Electric power input	kW	13	13	13	Rated power of inverter ×2
Electric power output	kW	14	14	14	Rated power of inverter ×2
Input terminal status	-	×	×	×	-
Output terminal status	-	×	×	×	-
Load meter	%	17	17	17	Pr. 56
Cumulative operation time	hr	20	×	×	-
Standard output voltage	-	×	21	21	FM terminal output of 1440pulses/sec, full-scale voltage output to AM terminal
Actual operating time	hr	23	×	×	-
Motor load ratio	%	24	×	×	Rated current of inverter ×2
Cumulative power	-	25	×	×	-

Notes: 1. Monitor selection of sections marked by "×" is not possible.

 If Pr.52 "DU/PU Main Display Data" is set to "0", output frequency–error display can be selected with the monitor using the sequence setup key. (Factory setting at time of shipment)

- 3. Load meter is the current value set by Pr. 56, 100% displayed in %.
- 4. If Pr. 54 is set to "1, 2, 5, 6, 11 and 17", Pr. 55 and Pr. 56 can be set to full-scale value.
- 5. Addition of circulation time and actual operating time is possible from 0-65,535 hr. After this the value is cleared and addition starts from 0 again.
- 6. The actual running time is counted in terms of time the inverter operates. Time is not counted when the inverter is stopped.
- When Pr. 52 is set to 100, the output frequency value monitored will differ when it is stopped and when it is running. (While stopped, the Hz LED blinks; while running, it stays lit.)

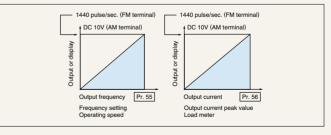
	Pr. 52				
	0 100				
	Running/stopped	Stopped	Running		
Output frequency	Output frequency	Set frequency	Output frequency		
Output current	Output current				
Output voltage	Output voltage				
Error display	Error display				

Notes: 1. During an alarm, the frequency when the alarm occurred is displayed.2. While output is stopped (MRS), everything is handled the same as when the inverter is stopped.

Pr.53 Selecting PU level display data

• Select the signal displayed in the level meter of the parameter unit (FR-PU04).

Please refer to the product instruction manual for further details.


Pr. 55 Pr. 56 Setting the Monitor Reference

Pr.55 Frequency monitor reference

Pr. 56 Current monitor reference

• For the FM and AM terminals, set the frequency and current values to the display standards.

Monitor standard setting parameter	Monitor content selection () depicts setting unit	FM terminal function selection (Pr.54) setting	AM terminal function selection (Pr.158) setting	
	Output frequency (Hz)	1	1	
Frequency monitor standard Pr.55	Frequency setting (Hz)	5	5	
	Operating speed (Pr.37)	6	6	
	Output current (A)	2	2	
Current monitor standard Pr.56	Output current peak value (A)	11	11	
	Load meter (A)	17	17	
Pr.55 and Pr.56 setu	p	Output pulse line of FM terminal should be set to 1400pulses/sec.	Output voltage of AM terminal should be set to 10V.	

Note: The maximum pulse train output of the FM terminal is 2400 pulse/sec.

Pr. 57 Pr. 58 Restart Operation after Instantaneous Power Failure or Commercial Power Supply Switch-over Operation

Pr.57 Restart coasting time **Pr.58** Restart cushion time

- When switching from commercial operation to inverter operation or following an instantaneous power failure, the motor does not have to stop (free-running condition) and the inverter can be restarted.
- Pr.57 "Restart, Coasting Time"

Pr. 57 setting	Restarting possible
9999 (default)	No
0 or 0.1–5*	Yes

The coasting time is the time spent waiting for control to start, which is used for restarting after recovery.

* When Pr.57 is set to 0, the standard coasting time described below is set. You can generally operate at this setting, but you can also adjust the time in the range of 0.1–5 seconds to better suit the inertial moment (GD²) of the load and the size of the torque.

0.75-1.5K: 0.5 seconds; 2.2-7.5K: 1.0 seconds; more than 11K: 3.0 seconds

- Pr.58 can usually be used with the default setting. The output voltage rise at the time of restart can be adjusted to suit load specifications (moment of inertia, torque).
- Notes: 1. If the inverter capacity is more than two ranks higher than the motor capacity, the over-current (OCT) alarm may sound and an instance in which operation cannot restart may occur.
 - In the case of the setting of Pr.57≠9999, and it is used under the condition of the CS signal being OFF, the inverter will not operate.
 - 3. Please refer to the product instruction manual for further information.

Pr.60 Selecting Intelligent Mode

Pr.60 Selecting intelligent mode

 Selection of this parameter is convenient if you want to begin use immediately and precise parameter settings are not required. Using this parameter, there is no need to set adjustable acceleration/deceleration speed times or variable-frequency pattern, and the inverter will operate under normal conditions with adequate values set for each parameter. (Note 1)

Pr. 60 setting	Function set	Description of operation	Parameter automatically set
0 (default)	Normal operating mode	-	-
3	Optimum adjustable speed mode	Using the Intelligent mode, an automated learning function set the average current of the adjustment speed to the rated current of the inverter and then automatically sets the boost value and adjustable speed times. Operating the inverter under the continuous rated limitations attains optimum operation. (Weize) This mode is suitable for uses in which the load changes very little.	Pr. 0 Pr. 7 Pr. 8
4	Energy-saving mode	This operation mode conducts on-line tuning of the output voltage to minimize the inverter output current during constant speed operation. It is best suited for energy-saving uses such as for fans and pumps.	Output voltage
9	Optimum excitation control mode	This mode optimizes the flux vector to control energy saving while providing maximum motor efficiency. It is most suitable for energy-saving use in machinery in which GD ² is large and adjustment speed time is long.	Output voltage

Notes: 1. Set individual parameters when you need control suited to the application as well.

2. The inverter selects the adequate parameters automatically and then begins operation.

Pr.66 Setting the Stall Prevention Operation Level

Pr.66 Stall prevention operation level reduction starting frequency

• When operated faster than 60Hz, the motor current does not increase, so acceleration is not always available. To improve the motor operating characteristics, the stall prevention operation level can be decreased in the high frequency zone.

Pr.65 Pr.67 Pr.68 Pr.69 Retry Selection

Pr.65 Retry selection

Pr.67 Number of retries at alarm occurrence

Pr.68 Retry waiting time

Pr.69 Retry count display erasure

- Retry is a function in which the inverter automatically resets the alarm when an inverter alarm occurs and then restarts and continues operation.
- Use Pr.65 to select the alarms for which a retry is done.

Pr.65 setting	Retry type
0	Retry for all alarms except fin overheating (FIN), PU disconnected (PUE), and CPU error (CPU).
1	Retry when an overcurrent cut-off (OC1-3) occurs.
2	Retry when a regenerative overvoltage cut-off (OV1-3) occurs.
3	Retry when a regenerative overvoltage cut-off (OV1–3) or overcurrent cut-off (OC1–3) occurs.
4	Over-current shutdown (OC1-3) Regenerative over-voltage shutdown (OV1-3) Instantaneous power failure (IPF), under-voltage protection (UVT) Ground fault over-current protection (GF) Parameter error (PE) Stall operation shutdown (OLT) Optional equipment error (OPT)
5	Over-current shutdown during acceleration (OC1) Over-current shutdown during deceleration (OC3)

• You can also set the number of retries when an alarm occurs with Pr. 67.

Pr.67 setting	Number of retries	Alarm error signal output
0 (default)	No retries	-
1–10	1–10	Not output
101–110	1–10	Output

- You can set the length of time to wait after an inverter alarm before restarting (0–10 sec.) using Pr.68.
- You can find out how many retires were needed to successfully restart by reading Pr.69. When set to 0, the count is erased.
- Notes: 1. When using this function, be sure to take precautions so that the operator or machinery is not injured when the inverter automatically starts running after the retry wait time set with Pr.68.
 - 2. A reset when restarting using the retry function does not clear accumulated data, such as for the electronic thermal O/L relay (which is not the case for a power supply reset).

Pr.71 Selecting Applied Motor

- When using a Mitsubishi constant torque motor, set Pr.71 to 1. The electronic thermal characteristic is set to the constant torque motor thermal characteristics.
- If Pr.0 and Pr.12 are the default settings at the time of shipment, the values for 5.5K and 7.5K of Pr.71 should be set to the values listed in the table below.

Pr.71 setting	0, 2	1
Pr.0 setting	3%	2%
Pr. 12 setting	4%	2%

		Motor	
Pr.71 setting	Electronic thermal characteristics	Standard	Constant torque
0	Thermal characteristics to match general-purpose motors (default)	•	
1	Thermal characteristics for Mitsubishi constant torque motor		•
2 (Note 1, 2)	Thermal characteristics suitable for standard motor when using 5-point adjustable variable frequency	•	

Notes: 1. These are the settings in the case of using Pr.100-Pr.109 (5-point adjustable variable frequency).

- 2. If Pr.19=9999, it is not possible to set Pr.71=2; therefore if you select Pr.71=2, please set a value other than 9999 for Pr.19.
- 3. Please refer to the product instruction manual for details regarding $\mathrm{Pr.100-Pr.109}.$

Pr.72 Pr.240 Changing Motor Noise

Pr.72 Select PWM frequency Pr.240 Set Soft-PWM

- When the PWM carrier frequency is lowered, motor noise increases, but the noise generated from the inverter and the leakage current decrease.
- Pr.72 can be set between 0 and 15; however, for 0, the value is 0.7kHz, for 15 the value is 14.5kHz, and all other settings are the set value in kHz.
- You can use Pr.240 to set whether to have Soft-PWM control, which changes the motor noise quality. Soft-PMW Control is a noise management system that filters motor mechanical noise into multiplex sound, which is more pleasant to the human ear.

Pr.240 setting	Description
0	Soft-PWM control disabled
1	Soft-PWM control enabled

Note: This is only valid when Pr.72 (Set PWM frequency) is 0-5.

Pr. 73 Selecting the Frequency Command Voltage Range

• Setting input specifications of terminals 1, 2 and 4 and override function.

Pr. 73 setting	AU signal	Terminal 2 input voltage	Terminal 1 input voltage*1	Terminal 4 input, 4-20 mA	Override function*2	Reversible poles	
0		DC 0-10V	DC 0-±10V				
1	1	DC 0-5V	DC 0-±10V	1	×		
2		DC 0-10V	DC 0-±5V			*3	
3		DC 0-5V	DC 0-±5V				
4		DC 0-10V	DC 0-±10V		0		
5	OFF	DC 0-5V	DC 0-±5V		0		
10	(none)	DC 0-10V	DC 0-±10V				
11		DC 0-5V	DC 0-±10V		×		
12		DC 0-10V	DC 0-±5V		×	0	
13		DC 0-5V	DC 0-±5V				
14		DC 0-10V	DC 0-±10V				
15		DC 0-5V	DC 0-±5V				
0			DC 0-±10V				
1	-	1	×	DC 0-±10V		×	
2		^	DC 0-±5V			*3	
3			DC 0-±5V				
4		DC 0-10V	×		0		
5	ON	DC 0-5V	Â	0	0		
10	(present)		DC 0-±10V				
11		×	DC 0-±10V		×		
12		^	DC 0-±5V]	Â		
13			DC 0-±5V]		0	
14		DC 0-10V	×				
15		DC 0-5V	×		0		

*1. Terminal 1 (frequency setup auxiliary input) is added to the main setting signal of terminals 2 and 4.

*2. When override has been selected, terminals 1 or 4 become the main speed setting and terminal 2 is part of the override signal (0–5V or 0~10V at 50–150%).

*3. A negative polar frequency command signal indicates an unacceptable condition. Notes: 1. A mark of "x" indicates a condition that does not accept a signal.

- 2. If the maximum output frequency is changed when the maximum frequency command voltage (current) is input, set the frequency setting voltage (current) gain using Pr.903 (Pr.905). Input of the command voltage is not required at this time. Additionally, as the adjustable speed time is a gradient of the adjustable standard frequency, it is not influenced by a change in the setting of Pr.73.
- 3. _____ is the default setting.
- 4. If the setting is Pr.22=9999, terminal 1 (frequency setup auxiliary input) becomes the terminal for setting the start prevention operation level. Please refer to the product instruction manual for details.

Pr.74 Input Filter Time Constant

- You can set the built-in input filter constant of the frequency setting signal for the external voltage or current. This aids in removing noise from the frequency setting circuit.
- When noise prevents stable operation, increase the filter time constant. Increasing the setting will lower responsiveness.

Pr. 75 Reset Selection/Disconnected PU Detection/PU Stop Selection

- This function monitors the PU (control panel, parameter unit) connector and sounds an alarm if connection to the main body of the inverter is broken. Selection of the function can be made using the reset terminal. If Pr.75 is set for 14–17, for any of the PU external or communication modes, the deceleration stop function can be selected by input using the PU stop key.
- Operation Description (PU disconnect detection)

The function setting "Yes or No" for detecting PU disconnection is set using the PU. When "Yes" is set, the unit will detect if the PU connector becomes disconnected from the main body of the inverter and execute a stop alarm.

Pr.75 setting	Reset signal	PU disconnected	PU stop selection	
0	Normal reset input possible	Keeps operating		
1	Reset input available only during operation of protective function	even when PU disconnected	Decelerates to a stop only when PU stop key is	
2	Normal reset input available	Inverter output	entered in PU	
3	Reset input available only during operation of protective function	cuts off when PU disconnected	operating mode	
14 (default)	Normal reset input available	Keeps operating	Stops when PU	
15	Reset input available only during operation of protective function	even when PU disconnected	stop key is entered in all operating modes	
16	Normal reset input available	Inverter output	(PU, external,	
17	Reset input available only during operation of protective function	cuts off when PU disconnected	communications, etc.).	

- Notes: 1. When the RES signal goes ON during operation, the inverter cuts off the output while the signal remains ON; the electronic overcurrent protection are reset, and the motor coasts to a stop.
 - When something other than a PU is connected (such as when doing RS-485 serial communications with a computer), no PU disconnections are detected.
 - 3. Input from the PU reset key is only accepted when protective functions are engaged, regardless of the Pr.75 settings.

Pr.76 Selecting Alarm Code Output

• If an error happens, the content can be output in a 4-bit digital signal using an open collector output terminal.

	Output terminal			
Pr. 76 setting	SU	IPF	OL	FU1
0 (default)	Depends on Pr. 190-Pr. 195 (output terminal function selection)			
1	Alarm code bit 3	Alarm code bit 2	Alarm code bit 1	Alarm code bit 0
2	Normal operation time: operating condition signal (same as setup value, 0) At time of error: Alarm code signal			

Note: Please refer to page 23 regarding the alarm codes.

Pr.77 Parameter Write Disable Selection

 This parameter disables writing in control panel and parameter unit functions.

Pr. 77 setting	Write disable function
0	Parameter write enabled. (Only while stopped during PU mode. Default.) (Note 1)
1	Parameter write disabled. (Note 2)
2	Parameter write also enabled during operation.(Note 3)

Notes: 1. Monitor-related Pr.52-Pr.56 can be set at any time.

2. Pr.77, Pr.75 and Pr.79 (operating mode selection) are write-enabled.

3. Some parameters cannot be written during operation. Please refer to Note 5 in the Parameters List.

Pr.78 Reverse Rotation Prevention Selection

• Set this parameter to prevent problems caused by reverse rotation caused by mistaken start signal input.

Pr.78 setting	Rotation direction	
0	Forward or reverse both allowed. (Default.)	
1	Reverse disabled.	
2	Forward disabled.	

Note: These settings are valid for both PU and external operation.

Pr.79 Operation Mode Selection

• The inverters have two operating modes: operation by external signal and operation by PU (control panel and parameter unit). You can set this parameter to use either or both. The setting for this parameter can be changed even when in external mode.

Setting	Description		
0 (default)	Operation can be switched between PU and external operation		
1	Only PU operation is possible		
2	Only external operation is possible		
	Operating frequency	Start signal	
3	PU • Direct setup and ♥▲ key setup Terminal signal • Multi-speed selection (Pr.4-6, 24-27)	Terminal signal • STF • STR	
4	Terminal signal • 2-5 DC 0-5V • 2-5 DC 0-10V • 4-5 DC 4-20mA • 1-5 DC 0- \pm 5V • 0- \pm 10V • Multi-speed selection (Pr.4-6, 24-27) • JOG frequency (Pr.15)	PU • Forward rotation key • Reverse rotation key	
6	Switchover mode		
7	PU operation interlock		
8	Switch operating mode external signal (can't switch during operation) • PU operation is selected when X16 signal is OFF • External operation is selected when X16 signal is ON		

Note: Use Pr.180-Pr.186 (input terminal function selection) to assign the terminal that the X16 signal will use.

Please refer to the product instruction manual for details.

Pr.160 User Group Selection

Pr. 160 User group read selection

• Up to 32 of the parameters can be registered in two user groups. The registered parameters can be read and written. When a user group is selected with Pr.160 (user group selection), unregistered parameters cannot be read.

Pr.160=0001 1 User group 1 (0: Disabled, 1: Enabled) 2 User group 2 (0: Disabled, 1: Enabled) 9999 is simple mode.

1

Pr. 180–186 Input Terminal Function Selection

- **Pr. 180** RL terminal function selection
- **Pr.181** RM terminal function selection
- **Pr.182** RH terminal function selection
- **Pr.183** RT terminal function selection
- **Pr. 184** AU terminal function selection
- **Pr. 185** JOG terminal function selection
- **Pr. 186** CS terminal function selection
- Functions can be freely assigned to input terminals by setting 0–16 for Pr. 180–Pr. 186.

Pr. number	Name	Terminal
180	RL terminal function selection	RL
181	RM terminal function selection	RM
182	RH terminal function selection	RH
183	RT terminal function selection	RT
184	AU terminal function selection	AU
185	JOG terminal function selection	JOG
186	CS terminal function selection	CS

Setting	Terminal	Terminal function				
Setting	reminal	reminal function				
0	RL		Low speed		Remote setting (clear settings)	
1	RM	Pr.59=0	Middle speed	Pr. 59=1, 2	Remote setting (deceleration)	
2	RH		High speed		Remote setting (acceleration)	
3	RT	Second fu	inction selection			
4	AU	Current input selection				
5	JOG	JOG operation				
6	CS	Instantaneous power failure restart selection				
7	ОН	External thermal input				
10	X10	FR-HC connection (inverter operation enable)				
11	X11	FR-HC co	nnection (instantane	ous power fa	ailure detection)	
12	X12	PU external operation interlock signal				
13	X13	External DC braking start signal				
14	X14	PID control efficiency signal				
16	X16	Switch between PU operation to external operation				
9999		No function				

Note: Please refer to the product instruction manual regarding Pr.59. The functions of the STF, STR, MRS, STOP, and RES terminals cannot be changed.

Pr. 190 Pr. 191 Pr. 192 Pr. 193 Pr. 194

Pr. 195 Output Terminal Function Selection

- **Pr.190** RUN terminal function selection
- **Pr. 191** SU terminal function selection
- **Pr. 192** IPF terminal function selection
- **Pr. 193** OL terminal function selection
- **Pr. 194** FU terminal function selection
- **Pr.195** A, B, C terminal function selection
- Set Pr. 190–Pr. 195 to 0–99 or 9999 to freely assign functions to the output terminals (including relays)

Pr. number	Name	Terminal
190	RUN terminal function selection	RUN
191	SU terminal function selection	SU
192	IPF terminal function selection	IPF
193	OL terminal function selection	OL
194	FU terminal function selection	FU
195	A, B, C terminal function selection	Error output

Set	Setting		
Positive logic	Negative logic	Signal	Terminal function
0	100	RUN	Inverter running
1	101	SU	Frequency reached
2	102	IPF	Instantaneous power failure or under-voltage
3	103	OL	Overloading warning
4	104	FU	Frequency detection
5	105	FU2	Second frequency detection
8	108	THP	Electronic overcurrent protection pre-alarm
10	110	PU	PU operation mode
11	111	RY	Inverter ready to run
13	113	Y13	Zero current detection
14	114	FDN	PID minimum
15	115	FUP	PID maximum
16	116	RL	PID forward reverse output
17	-	MC1	MC1 commercial-use switch
18	-	MC2	MC2 commercial-use switch
19	-	MC3	MC3 commercial-use switch
25	125	FAN	Fan failure output
26	126	FIN	Fin overheat pre-alarm
98	198	LF	Minor breakdown output
99	199	ABC	Error output
99	99	-	No function

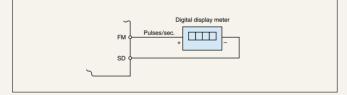
0-99: Positive logic 100-199: Negative logic

Note: In the case of Pr.76=1, the output signal for SU, IPF, OL and FU terminals follows Pr.76. Output allocation for RUN terminal and error output relay follow the setup mentioned above, and does not relate to Pr.76.

Pr. 240 See the description of **Pr. 72**

Pr.244 Cooling Fan Operation Selection

• Controls the cooling fan.


Pr.244 setting	Fan operation			
0	No ON-OFF control (Factory setting)			
1	ON-OFF control (Always ON during inverter operation; while the inverter is stopped, goes ON-OFF according to temperature control.)			

Pr.900 FM Terminal Output Calibration

- You can use the control panel to calibrate meters connected to the FM terminal. This calibration function is shared by all monitor functions selected with Pr.54.
- The FM terminal output is pulse output like that shown in the diagram below. You can set Pr.900 so you can use the control panel for scale calibration of meters connected to the inverter without having to install a scale calibrating resistor. (See the manual for more information about calibration.)

• Monitoring Using Digital Display Meter

You can display data digitally using a digital counter by employing the pulse train output of the FM terminal. Output is 1440 pulse/sec. at the full scale value described in the section on Pr. 54. When operating frequency is selected for monitoring, you can set the FM output frequency for this terminal using Pr. 55.

Note: Set before shipment so that 1mA provides full scale and a FM output frequency of 1440Hz at 60Hz.

Pr.901 AM Terminal Output Calibration

• The AM terminal is used for calibration when the monitor signal is set by Pr. 158 to execute analog output.

Please refer to the product instruction manual regarding the calibration method.

Pr. 902 Pr. 903 Pr. 904 Pr. 905

Frequency Setting Signal Gain and Bias Adjustment

Pr.902 Frequency setting voltage bias

Pr.903 Frequency setting voltage gain

Pr.904 Frequency setting current bias

Pr.905 Frequency setting current gain

• The size (gradient) of the output frequency for the frequency setting signal (DC 0–5V, DC 0–10V and 4–20mA) can be set optionally. It has the characteristic of a straight line which is defined by two points Pr.902 (Pr.904) and Pr.903 (Pr.905).

Pr.990 Buzzer Sound Control

• You can turn the buzzer sound used when parameter unit keys are pressed either on or off.

Pr.990 setting	Description
0	No buzzer
1	Buzzer

Pr.991 LCD Contrast

• You can adjust the contrast of the LCD on the optional FR-PU04 parameter unit.

Pr.991 setting	Description			
	Bright			
0 to 63	53 (default)			
	Dark			

Note: The LCD contrast setting will not be recorded unless you press the $\ensuremath{\left[\text{WRITE}\right]}$ key.

Protective Functions

Except for the motor's electronic thermal relay, the following functions are provided for the protection of the inverter itself, but they may also function when the inverter breaks down.

Function r	name	Description		Display	Туре (Note 3)	
T unouon 1		Docuption		Diopiay	Major fault	Minor fault	
		Accelerating		E. [][/ (OC1)			
Over-current cut-of	ff	When the inverter output current exceeds the rated current by more than approximately 150% during acceleration/deceleration or at constant speed, the protective circuit activates, halting inverter output.	Constant speed	E. [][] (OC2)	•		
			Decelerating	E.[[[]] (OC3)			
Deservative ever	valtana	If the DC voltage in the inverter's internal main circuit exceeds the rated value as a result	Accelerating	<u>Ε.Πυ</u> Ι (OV1)			
Regenerative over cut-off	vollage	of regenerative energy generated through motor braking during acceleration/deceleration or at constant speed, the protective circuit activates, halting inverter output. There are also cases where it is activated by surge voltage generated in the power supply system.	Constant speed Decelerating	<u>Ε.Πμ</u> ² (OV2) Ε.Πμ ³ (OV3)	•		
		The electronic thermal relay inside the inverter detects motor overheating resulting from o	Ĵ,	<u>E.UU</u> (003)			
Overload cut-off (electronic thermal relay)	Motor	a decline in cooling capacity at constant speed, activating the protective circuit and halting. The electronic thermal relay cannot protect multipolar and other special motors, or severa together, so a thermal relay should be installed on the inverter's output side. (120% of ove seconds.)	inverter output. I motors working	<i>Е.Г.НП</i> (тнм)	•		
alonna (olay)	Inverter	In the case where a current flows that is at least 120% of the rated output current but does overcurrent cut-off (OC) level (150% max.), the electronic thermal relay activates accordin characteristics to protect the main circuit transistors, and halts inverter output.		<i>Е.Г.НГ</i> (тнт)	•		
Instantaneous pow protection	er failure	When the power fails for more than 15ms and is restored within approximately 100ms, the instantaneous power failure protection function activates to prevent erroneous operation of the control circuit, and halts inverter output. At this time, error warning output contacts open (between terminals A and C) and close (between terminals B and C) (Note 4). If the power failure continues for 100ms or more, the error warning output does not activate, and if the start signal is ON when power is restored, the inverter restarts. (If the instantaneous power failure lasts for less than 15ms, the control circuit functions normally.)			•		
Undervoltage protection		 If the inverter's supply voltage drops, the control circuit can no longer fulfill its normal fi Also, the motor suffers from insufficient torque and overheating. For this reason, invert when the supply voltage falls to 150V or below (300V or below in the case of 400V clas (2) The undervoltage protection function operates if there is no short bar between P and P 	<i>Е.ЦиГ</i> (UVT)	•			
Fin overheat		If the cooling fin overheats, the fin overheat sensor activates and halts inverter output.	E.FIn (FIN)	•			
Fan trouble		In the case of inverters with built-in cooling fans, "FN" is displayed at the control panel if the cooling fan stops operation because of trouble, or operates differently from the setting for Pr.244 (Cooling fan operation selection). Inverter output does not halt.				•	
Output side ground overcurrent protect		Inverter output halts when a ground fault occurs on the inverter's output side (load side) and a ground fault overcurrent is generated.			•		
External thermal re operation (Note 1)		When an externally installed motor overheating protective thermal relay or temperature relay within the motor, etc., activates (relay contact open), the inverter can be stopped if the contact is input to the inverter. Even if the relay contact resets automatically, the inverter will not restart unless it is reset also.			•		
Option error		 When a dedicated built-in type option is installed within the inverter, inverter output halts if there is a setting error or the connection is faulty. When a high-power factor converter connection is set, the display indicates that an AC power supply is connected to R, S, T. 			•		
Parameter error		Generated when an error occurs in a stored parameter (e.g. E ² ROM breakdown).		<i>E.PE</i> (PE)	•		
PU disconnected		Inverter output halts when communication between the main unit and the PU are interrupt disconnection of the PU, etc., when Pr. 75 is set to 2, 3, 16, 17.	ed by	<i>E.PUE</i> (PUE)	•		
No. of retries exce	eded	When operation cannot be restarted normally within the set number of retries, inverter out	put is halted.	<i>E.r Ef</i> (RET)	•		
Output phase loss	detection	Detects when the inverter looses an output phase (U, V or W).		<i>E.L.F</i> (LF)	•		
CPU error		If the built-in CPU does not complete operation within the prescribed time, it self-diagnoses a fault and halts inverter output.		<i>Е.[.РЦ</i> (CPU)	•		
During acceleration		When a current of 120% (Note 2) or more of the inverter's rated current flows in the motor, the rise in frequency is stopped until the load current declines, preventing the inverter from executing an over-current shut-off. The frequency is increased again once the current falls below 120% of the rated value.		(OL)			
Current limit/ Stall prevention		When a current of 120% (Note 2) or more of the inverter's rated current flows in the motor lowered until the load current declines, preventing the inverter from executing an over-curr The frequency is restored to the set level once the current falls below 120% of the rated view.	E.[][[(OLT)	•			
		If the motor's regenerative energy is excessive and surpasses its braking capacity, the de is halted, preventing the inverter from executing an over-current shut-off. Once the regen has declined, deceleration continues. When a current of 120% (Note 2) or more of the inv current flows in the motor, the decline in frequency is halted until the load current declines inverter from executing an over-current shut-off. The frequency is lowered once again onc below 120% of the rated value.	(When inverter output is halted)				
24VDC power sup short circuit	ply output	When the DC 24V power output from the PC terminal is short circuited, power output is shut off. At such times, all external contact inputs are switched OFF. Resetting cannot be performed by an RES signal input. To reset, either use the control panel or shut off the power, then turn it on again.		<i>Е.Р.2Ч</i> (Р24)	•		
Operating panel po short circuit	ower supply	When the control panel power supply (P5S of the PU connector) is short circuited, power At such times, it is not possible to use the control panel (parameter unit) or perform RS-488 from the PU connector. To reset, either input an RES signal or shut off the power, then tur	5 communications	E. [F E (CTE)	•		

Notes: 1. External thermal relay operations are only performed when Pr.180-Pr.186 (input terminal function selection) is set to OH.

2. Indicated when the stall prevention operation current level is set to 120% (default setting). When this value is altered, stall prevention is performed at the altered set value.

3. Major faults: The protective function activates, inverter output is shut off, and an error output is executed. Minor faults: Output is not shut off even when the protective function activates. It is possible to output minor fault signals by setting parameters. 4. In the case where Pr.190–Pr.195 (output terminal function selection) are set to the default values.

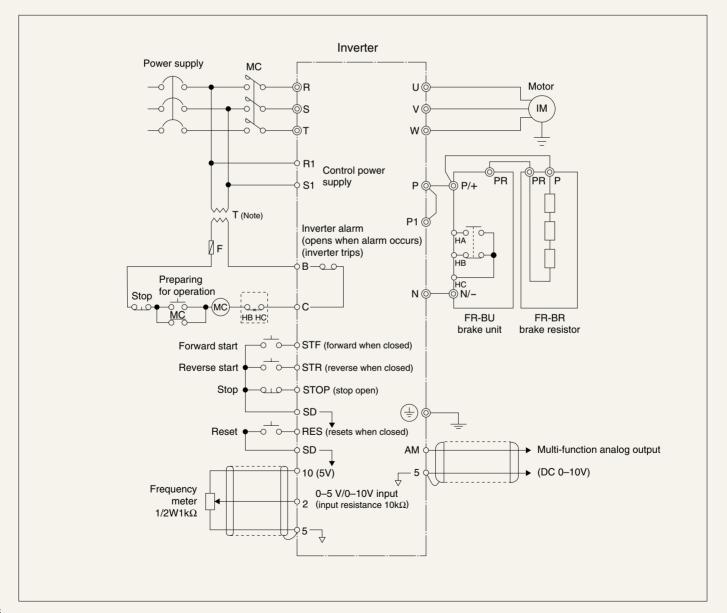
5. When setting Pr.76 (alarm code output selection), error contents can be output in 4 bit digital signal. The signal is output from the open collector output terminal, which is a standard inverter component.

0: Output transistor OFF 1: Output transistor ON (common SE terminal)

Alarm Code (Note 5)						
Output	Ferminal C	Operation	(Note 5)	Alarm	Check Point	Procedure
SU	IPF	OL	FU	Code		
0	0	0	1	1	Was the acceleration very quick? Was there an output short-circuit or ground fault? Is the torque boost setting high?	Increase acceleration time.
0	0	1	0	2	Was there a rapid change in load? Was there an output short-circuit of ground fault?	Resolve the problem of quick load change.
0	0	1	1	3	Was the deceleration very quick? Was there an output short-circuit or ground fault? Is the motors brake operation too fast?	Increase length of deceleration time. Check braking operation.
0	1	0	0	4	Was the acceleration very quick? Was there a rapid change in load? Was the deceleration very quick? Was there an excessively large surge voltage form the power supply?	Increase acceleration time. Resolve the problem of quick load change. Increase length of deceleration time. Reduce the frequency of using the brake.
0	1	0	1	5	Is the load too large for the motor? Is there a high torque boost when the load is light?	Reduce the load. Increase the capacity of the motor and inverter.
0	1	1	0	6	Is the load too large for the motor?	Reduce the load. Increase the capacity of the motor and inverter.
0	1	1	1	7	Check the cause of the power interruption.	Recover the power.
1	0	0	0	8	Is the fluctuation in power supply large? Were any large capacity motors started? Are there any short-circuited boards or DC reactors connected between terminal P and P1?	Investigate power-supply distribution and devices. Connect short-circuit bar or DC reactor between terminals P and P1.
1	0	0	1	9	Is the surrounding temperature too high?	Temperature of surrounding should be within operating specifications.
_	_	_	_	_	Is there any problem with the cooling fan?	Replace the fan.
1	0	1	1	В	Is there grounding for the motor and connecting line.	Reconnect the grounding wires.
1	1	0	o	с	Did the motor overheat? Is the Pr.180-Pr.186 setting correct?	Reduce the load and operating frequency.
1	1	1	0	E	Has the connector come loose?	Confirm all connections are satisfactory.
1	1	1	1	F	Is the number of parameters written too many?	Please contact your local Mitsubishi dealer.
1	1	1	1	F	Are any of the DU or PU mounts loose? Is the Pr.75 setting correct?	Confirm that DU and PU are mounted.
1	1	1	1	F	Check the cause of error.	After confirming the cause and making repair, reset the inverter.
1	1	1	1	F	Was there any output phase interruption?	Are there any phase interruptions?
1	1	1	1	F	Has the connector come loose?	Confirm all connections are correct.
					Is the load too large for the motor? Was there a rapid acceleration operation?	Reduce the load. Increase the capacity of the motor and inverter.
1	1	0	1	D	Is the load too large for the motor?	Reduce the load. Reduce the frequency of using the brake.
_	_	_	_	_	Did the PC terminal output short-circuit? Repair the short-circuit.	
—	—	_	_	_	Did the PU connector connection line short-circuit?	Check the PU and cable.
	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	Output Terminal C SU IPF 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Terminal Operation SU IPF OL 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Terminal Operation (Note 5) SU IPF OL FU 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Terminal Operation (Note 5) Alarma Code SU IPF OL FU Alarma Code 0 0 1 1 1 0 0 1 0 2 0 0 1 1 3 0 0 1 1 3 0 0 1 0 2 0 0 1 1 3 0 1 0 1 3 0 1 0 3 3 0 1 0 3 3 0 1 1 3 3 0 1 1 3 3 0 1 1 3 3 1 1 1 3 3 1 0 0 3 3 1 0 0 1 3 1 1 1 1 3 1 1 1 1 3 1 1 <t< td=""><td>Output Terminal Operation (Note 5) Adam Code Check Point SU IPF OL FU Code 0 0 0 1 1 Was the a couple short-focul or ground fault? Was there a output short-focul or ground fault? 0 0 1 0 2 Was there a cuple short-focul or ground fault? 0 0 1 0 2 Was there a cuple short-focul or ground fault? 0 0 1 0 2 Was there a nuple short-focul or ground fault? 0 1 0 0 1 3 Was there a nuple short-focul or ground fault? 0 1 0 0 4 Was there a nuple short-focul or ground fault? 0 1 0 0 4 Was there a nuple short-focul or ground fault? 0 1 0 0 1 5 Is the load too large for the motor? 1 0 1 1 7 Check the cause of the power interruption. 1 0 0 1 1 1</td></t<>	Output Terminal Operation (Note 5) Adam Code Check Point SU IPF OL FU Code 0 0 0 1 1 Was the a couple short-focul or ground fault? Was there a output short-focul or ground fault? 0 0 1 0 2 Was there a cuple short-focul or ground fault? 0 0 1 0 2 Was there a cuple short-focul or ground fault? 0 0 1 0 2 Was there a nuple short-focul or ground fault? 0 1 0 0 1 3 Was there a nuple short-focul or ground fault? 0 1 0 0 4 Was there a nuple short-focul or ground fault? 0 1 0 0 4 Was there a nuple short-focul or ground fault? 0 1 0 0 1 5 Is the load too large for the motor? 1 0 1 1 7 Check the cause of the power interruption. 1 0 0 1 1 1

Basic Wiring Diagram (Main Circuit Input Cut-Off by Alarm)

- This circuit shuts down the main circuit input of the inverter using an electromagnetic contactor when an inverter shutdown alarm occurs. Also using STOP connection provides self protection of the inverter.
- Using the power-supply terminals R1 and S1 for the control circuit, even if an inverter shutdown alarm occurs, the control circuit and PU can be operated without resetting the main circuit of the inverter power-supply. Please refer to the product instruction manual regarding other connecting methods for the control circuits of other power sources.


An error signal can be held, and the error contents conveniently read out using the PU, thus aiding in the executing of troubleshooting.

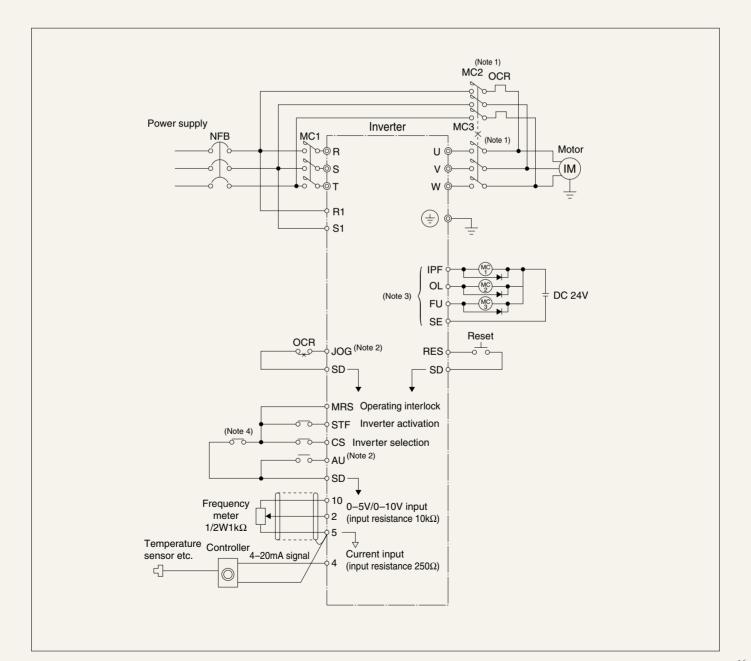
If you use the FR-BIF radio noise filter, please connect it to the primary side of the MC. If you connect it to the secondary side, an under-voltage alarm (E.UVT) will occur when the MC is switched from ON to OFF. Additionally, when you disconnect

the control terminal at the time of maintenance, please be sure to turn off the primary side breaker and confirm no power with the charge lamp before beginning maintenance work.

- When the FR-BU brake unit (option) is needed, such as when machinery with large inertial moment (GD²) causes system shutdown or shutdown in a short period of time, please connect it between the P and N terminals.
- The terminal FM-SD (or AM-5 as in example) output can be either a frequency or a motor current signal. (See the description of Pr. 54.)
- For the reset input, you can also select a function (error reset) that accepts signals only when the inverter alarm stops. (See the description of Pr. 75.)

Note: Use a step-down transformer for 400V power supply.

Automatic Operation Using DC 4–20mA Current Signals (Building Air-Conditioners)


- This is a sample circuit for automatic operation when used in combination with controllers such as temperature control for building air-conditioners.
- Switching back and forth between inverter operation and commercial operation is possible. The operation timing of MC1–3 is best controlled by the commercial switch sequence function, which is integrated into the inverter. External switching of sequence circuits is also easy.
- Operation automatically switches to commercial power supply operation when an alarm stop occurs in the inverter.
- Using the AU signal, it is possible to use the 4–20mA signal from the sensor controller and the manual signal (voltage) from the speed setting.

- Set Pr.75 to change the reset input signal to an error reset that is only accepted when an inverter alarm stop occurs.
- \bullet For safety, install a magnetic contactor on the input side.

Related parameters

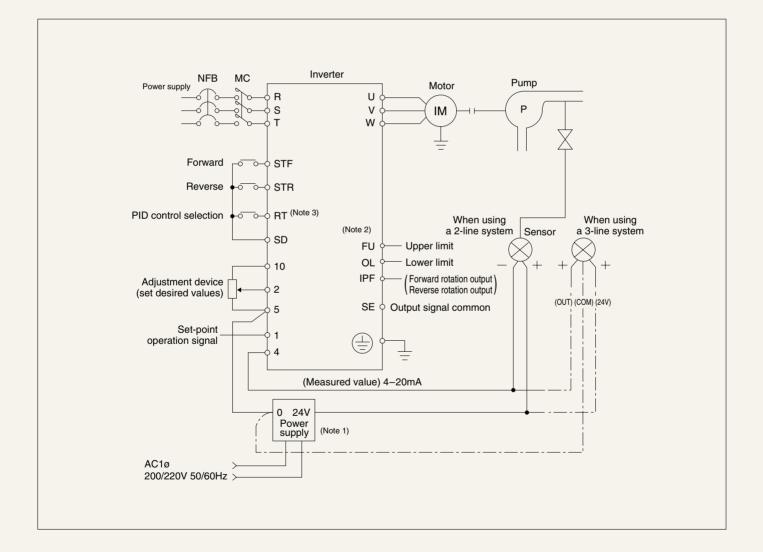
Commercial power supply switch-over Pr.135–139 Reset section Pr.75 Terminal function selection Pr.180–195

- Notes: 1. Use mechanically interlocked magnetic contactors for MC2 and MC3. 2. Uses the terminal in the case of Pr.185=7 and Pr.186=6.
 - 3. Uses the terminal in the case of Pr.192=17, Pr.193=18 and Pr.194=19.
 - 4. Depends upon control circuit system/wiring.

PID Control

(Process control of flow rate, wind capacity, pressure, etc.)

- PID control operation can be executed in the main body of the inverter by selection of Pr.128.
- For safety purposes, please install a electromagnetic contactor.


Related parameters

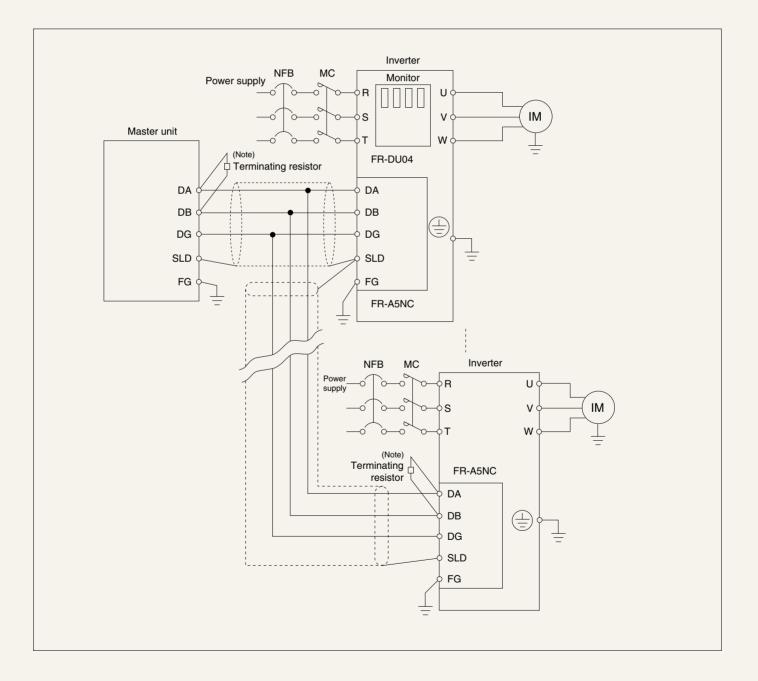
PID operation selection Pr.128 PID proportional band Pr.129 PID integral time Pr.130 Input terminal function selection Pr.180–186

Upper/lower limits [Pr.131/132] Target value of PID control during PU operation [Pr.133] PID differential time [Pr.134] Output terminal function selection [Pr.190–195]

Notes: 1. Please use a power-supply that suits the power use requirements of the detector.

- 2. The function output from the output signal terminals depends on the values set for Pr.190–Pr.195 (output terminal selection). The example terminals used are in the case of Pr.192=16. Pr.193=14 and Pr.194=15.
 - 3. The input signal terminal changes function depending the values set for Pr.180–Pr.186 (input terminal function selection). The example terminal is used in the case of Pr.183=14.

CC-Link Operation


(When linked to a programmable controller)

- CC-Link operation can be executed with the FR-A5NC (optional).
- With one inverter occupying one station, the maximum number of possible connected inverters is 42.
- For safety purposes, please install a electromagnetic contactor for each inverter.

Related parameters

Operation mode selection Pr.79 Link start mode selection Pr.340 Operation command write Pr.338 Speed command write Pr.339

Note: Please use a terminating resistor at the Master controller (Master unit) and the furthest inverter unit.

Peripherals

Selecting Peripherals

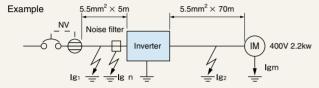
Voltage Motor	Motor output	Analizable investore	No-fuse breaker (NF) or leakage breaker (NV)	Magnetic	Lead (mm ²)	
vollage	(kW)	Applicable inverters	Standard models With power factor improvement rector		contactors (MC)	R, S, T	U, V, W
	0.75	FR-F520-0.75K	Models NF30 and NV30 10A	Models NF30 and NV30 10A	S-N10	2	2
1.5		FR-F520-1.5K	Models NF30 and NV30 15A	Models NF30 and NV30 15A	S-N10	2	2
	2.2	FR-F520-2.2K	Models NF30 and NV30 20A	Models NF30 and NV30 15A	S-N11, S-N12	2	2
	3.7	FR-F520-3.7K	Models NF30 and NV30 30A	Models NF30 and NV30 30A	S-N20	3.5	3.5
	5.5	FR-F520-5.5K	Models NF50 and NV50 50A	Models NF50 and NV50 40A	S-N25	5.5	5.5
	7.5	FR-F520-7.5K	Models NF100 and NV100 60A	Models NF50 and NV50 50A	S-N30	14	8
200V	11	FR-F520-11K	Models NF100 and NV100 75A	Models NF100 and NV100 75A	S-N50	14	14
class	15	FR-F520-15K	Models NF225 and NV225 125A	Models NF100 and NV100 100A	S-N65	22	22
	18.5	FR-F520-18.5K	Models NF225 and NV225 150A	Models NF225 and NV225 125A	S-N80	30	30
	22	FR-F520-22K	Models NF225 and NV225 175A	Models NF225 and NV225 150A	S-N95	38	30
	30	FR-F520-30K	Models NF225 and NV225 225A	Models NF225 and NV225 175A	S-N125	60	50
37	37	FR-F520-37K	Models NF400 and NV400 250A	Models NF225 and NV225 225A	S-N150	80	80
	45	FR-F520-45K	Models NF400 and NV400 300A	Models NF400 and NV400 300A	S-N180	100	80
	55	FR-F520-55K	Models NF400 and NV400 400A	Models NF400 and NV400 350A	S-N220	150	125
	0.75	FR-F540-0.75K	Models NF30 and NV30 5A	Models NF30 and NV30 5A	S-N10	2	2
	1.5	FR-F540-1.5K	Models NF30 and NV30 10A	Models NF30 and NV30 10A	S-N10	2	2
	2.2	FR-F540-2.2K	Models NF30 and NV30 15A	Models NF30 and NV30 10A	S-N20	2	2
	3.7	FR-F540-3.7K	Models NF30 and NV30 20A	Models NF30 and NV30 15A	S-N20	2	2
	5.5	FR-F540-5.5K	Models NF30 and NV30 30A	Models NF30 and NV30 20A	S-N20	3.5	2
	7.5	FR-F540-7.5K	Models NF30 and NV30 30A	Models NF30 and NV30 30A	S-N20	3.5	3.5
400V	11	FR-F540-11K	Models NF50 and NV50 50A	Models NF50 and NV50 40A	S-N20	5.5	5.5
class	15	FR-F540-15K	Models NF100 and NV100 60A	Models NF50 and NV50 50A	S-N25	14	8
	18.5	FR-F540-18.5K	Models NF100 and NV100 75A	Models NF100 and NV100 60A	S-N35	14	8
	22	FR-F540-22K	Models NF100 and NV100 100A	Models NF100 and NV100 75A	S-N50	22	14
	30	FR-F540-30K	Models NF225 and NV225 125A	Models NF100 and NV100 100A	S-N65	22	22
	37	FR-F540-37K	Models NF225 and NV225 150A	Models NF225 and NV225 125A	S-N80	38	22
	45	FR-F540-45K	Models NF225 and NV225 175A	Models NF225 and NV225 150A	S-N80	38	38
-	55	FR-F540-55K	Models NF225 and NV225 200A	Models NF225 and NV225 175A	S-N125	60	60

Notes: 1. The lead size shown is for a wiring length of 20m.

2. When the inverter capacity exceeds the motor capacity, select the breaker and magnetic contactor appropriate for the inverter model and select the lead and reactor for improving the power factor appropriate for the motor model.

Low-Voltage Standards

(1) General-purpose inverters can be used for low-voltage standards.

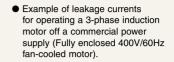

(2) Caution: When using DIN VDE0160, some specifications and cautions differ from the standard, as described in the table below.

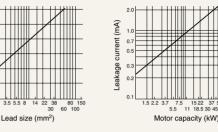
Specification	Changes and cautions	Comments
Error output	Contactor (DC 30V, 0.3A)	-
Ground	Securely ground equipment and use single wires for ground terminals.	-
Magnetic contactor, no-fuse breaker	Use products that conform to EN or IEC standards.	The magnetic contactors and no-fuse breakers on the peripherals list conform to IEC standards.
Input insulation transformer surge absorber	Use products that conform to EN or IEC standards for the inverter inputs.	Standard IEC664
Line type and lead size	The inverter connection lead should conform to EN60204.	Standard EN60204, appendix C
Power voltage (400V class)	3-phase 380-415V 50/60Hz	-

Selecting the Rated Sensitivity Current of the Leakage Breaker

If you are using a leakage breaker in the inverter circuit, use the following criteria to select a rated sensitivity current.

- •For the Progressive Super NV Series (models SP, CF, SF and CP): Rated sensitivity current I ∆n≥10× (Ig2+Ign+Ig2+Igm)
- For the conventional NV series (models CA, CS, and SS):
- Rated sensitivity current I $\Delta n \ge 10 \{Ig_1 + Ig_n + 3 \times (Ig_2 + Ig_m)\}$
 - Ig1, Ig2: Leakage current when operating with a cable run off a commercial power supply.
 - Leakage current of noise filter on inverter input side. Ign*:
 - Leakage current when operating a motor off a with Igm: commercial power supply.


- Notes: 1. Install the NV on the primary side of the inverter the (power supply side). 2. If you are using the $\boldsymbol{\curlyvee}$ connection neutral point grounding method, the sensitivity current of the grounding at the inverter's secondary side will increase, so use a class D ground (10 Ω or less) for the protection ground
 - of the equipment under load. Consult the filter manufacturer for the leakage current value of the noise
 - filter installed at the inverter input side. (See pages 33, 34 for the Mitsubishi inverter filters.)
- Noise


When making operation quieter by raising the carrier frequency, electromagnetic noise tends to increase, so measures should be taken to reduce it along the lines outlined below. Note that in some installations, noise can be a factor even without the low noise settings (i.e., at default settings).

- Noise levels can be reduced by decreasing the Pr.72 setting for the carrier frequency.
- An FR-BIF radio noise filter can be effective against AM radio broadcast noise.

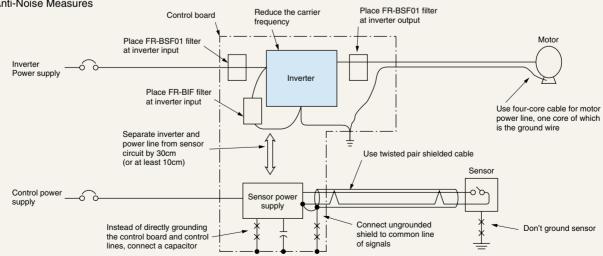
Anti-Noise Measures

• If the CV cable is metallic wire, the example is of current leakage per 1km when operating with a commercial power-supply. (3-phase, 3-line system, 400V/60Hz ∆ connection)

In the case of λ connection, approximately 1/3 of the above.

• Examples of Selections

(mA)


current

-eakage

(In the case of a 3-phase, 3-line system A connection like that shown in the figure to the left.)

		Progressive Super NV Series	Conventional NV
Leakage current	(lg1)	$\frac{1}{3}$ × 66 × -	5m 1000m = 0.11
Leakage current	(lgn)	0 (without	noise filter)
Leakage current	(lg2)	$\frac{1}{3}$ × 66 × -	70m 1000m = 0.54
Motor leakage current	(Igm)	0.	36
Total leakage current		2.01	5.81
Rated sensitivity current	(≧lg×10)	30	100

- The FR-BSF01 and FR-BLF line noise filter can be effective against malfunctioning of sensors.
- Inductive noise in the inverter's cable runs can be reduced by separating them 30cm (or at least 10cm) and using twisted pair shielded cable. The shielded cable should not be grounded; instead, connect them to one point on the common side of the signals.

Leakage Current

There are electrostatic capacitances between the inverter's input/output wiring and other wires and the earth and in the motor. Leakage current flows through these. Since their values are affected by the static caapcitances and carrier frequencies, leakage current increases when operation is made quieter by increasing the inverter's carrier frequency. This can be improved by the following measures. Also, when selecting a leakage breaker, follow the advice on page 30, regardless of the carrier frequency.

Туре	Effect and Response	Leakage current paths
Leakage current to earth	 The leakage current between the inverter input and output lines and the earth flows not just to the inverter system but also to other systems through the ground wires. Leakage breakers and relays may trip unnecessarily. Response Lower the inverter's carrier frequency (Pr. 72). Motor noise will increase, but the noise can be made more pleasant by selecting Soft-PWM control (Pr. 240). Use of anti-harmonic and anti-surge components (such as Mitsubishi's New Super NV Series) in the leakage breakers of the inverter system and other systems can allow use of the low noise configuration (with the raised carrier frequency). 	Power NV1 Motor supply \downarrow Leakage breaker $ \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
Leakage current between wires	 Leakage current flows through the electrostatic capacitance between inverter output lines. Externally connected thermal relays can be tripped unnecessarily by harmonics of leakage currents. Response Use the built-in electronic thermal protection in the inverter. Lower the inverter's carrier frequency (Pr.72). Motor noise will increase, but the noise can be made more pleasant by selecting Soft-PWM control (Pr.240). 	Power supply

List of Options

General Options

	Name	Туре	Application, specifications, etc.	Applicable inverter		
	12-bit digital input	FR-A5AX	A digital signal of BCD or binary code can be used for setting the inverter's frequency.			
	Digital output		Outputs the inverter main unit's standard output signal at the open collector.			
	Expansion analog output	FR-A5AY	Outputs signals such as output frequency, output voltage, output current in analog form.	Common to all units		
Ŧ	Relay output	FR-A5AR	Outputs the inverter main unit's standard output signal at the relay contact.			
s (Note	Computer link	FR-A5NR	Allows changes in inverter operations, monitoring and parameters to be executed from a computer or PLC.			
Built-in options (Note 4)	Profibus DP	FR-A5NP	Allows changes in inverter operations, monitoring and parameters to be executed from a computer or PLC.	Common to all units		
Built-in	DeviceNet [™]	FR-A5ND	(Available soon)			
	CC-Link	FR-A5NC				
	Modbus Plus	FR-A5NM	Allows changes in inverter operations, monitoring and parameters to be executed from a computer or PLC.			
	Parameter unit (8 languages)	FR-PU04	Interactive parameter unit with LCD.	Common to all units		
	Parameter unit connector cable	FR-CB2 (Note 2)	Cable for connecting control panel or parameter unit.	 Common to all units 		
	Cooling fan external installation attachment	FR-A5CN (Note 2)	Allows inverter's heat generating parts to be installed externally at the back of the unit.	For inverter capacities 1.5K–55K		
	IP40 attachment	FR-A5CV (Note 2)	Allows inverter's to meet IP40 specifications.	For inverter capacities 0.75K-22K		
	Conduit connection attachment	FR-A5FN (Note 2)	Allows direct connection of conduits. IP20 compliance possible.	For inverter capacities 30K–55K		
	Mounting adaptor attachment	FR-A5AT (Note 2)	Plate to allow mounting using same dimensions as FR-A200E models.	For inverter capacities 0.75K-22K, 55K		
	Noise filter (compliant with EMC directive)	SF (Note 2)	Noise filter (compliant with EMC directives) (EN50081-2)	(Note 5) For inverter capacities 0.75K–55K		
	Surge voltage suppression filter	FR-ASF-H (Note 3)	Filter for suppressing micro-surge voltage at inverter's output side.	For inverter capacities 0.75K–55K		
nomn	Power factor improvement DC reactor	FR-BEL(H) (Note 1, 3)	For inverter input power factor improvement (overall power factor approx. 95%) and power supply balancing.	For inverter capacities 0.75K-55K		
Standalone, common	Power factor improvement AC reactor					
dalor	Radio noise filter	FR-BIF-(H) (Note 1, 3)	For suppressing radio noise.			
stano		FR-BSF01	For suppressing line noise (for small capacities of 3.7kW or less).	Common to all units		
0)	Line noise filter	FR-BLF	For suppressing line noise.			
	FR-BU type brake unit	BU-1500–15K, H7.5K–H30K				
	Brake unit	FR-BU-15K-55K, H15K-55K	For use in boosting inverter's braking capacity. (For high inertial loads or negative			
	Resistor unit	FR-BR-15K-55K, H15K-55K	loads.) Used in combination with resistor units.			
	Power regeneration converter	FR-RC-15K-55K, H15K-H55K	High performance brake unit capable of regenerating braking energy generated by motor.	Depends on capacity		
	High-power factor converter	FR-HC7.5K-55K, H7.5K-H55K	Greatly suppresses high frequencies by improving input current waveforms into sine waves by switching converter. (Used in conjunction with standard accessories) Power regeneration also possible.			

Notes:

2. Dindicates number value.

3. a indicates capacity.
4. A total of 3 built-in options can be mounted at the same. (Only one unit of each option type and only one communication option.)

^{1.} Units in the 400V class are designed by an "H" in the model name.

Standalone Options

Units: mm (inch)

Name (Type)				Specifica	tions, config	urations, etc.				
	refer to the dim	nensions (page	ses the mounting s 9) that include the sions of the panel o	attachment.	e of the attach	nment. Therefore	e, when using	g this attachm	nent,	
FR-A5CN		Model	Δ	pplicable inv	erter	Model		Applic	able inver	ter
Attachment for external			200V clas		00V class	iniouor		V class	-	OV class
mounting of cooling fin		FR-A5CN01			540-1.5K-3.7K			520-37K		-30K-37K
		FR-A5CN02			540-5.5K/7.5K 540-11K	FR-A5CN0		520-45K	FR-F540	-45K–55K
		FR-A5CN03 FR-A5CN04			540-11K 540-15K–22K	FR-A5CN0		520-55K 520-30K		_
	This attachmen or drive belts the set of the set o	nt is suited for v	d to IP40 specificati wall mounting. (The im do not project in	IP40 [JEM103	0]: The attach					diameter
	Notes	ent is not const	ructed to be imperv	ious to water o	r other			Applic	able inver	ter
Attachment for IP40			suited to environme			Model	200	V class	400	OV class
	water, soot et					FR-A5CV0	1 FR-F520)-0.75K–7.5K	FR-F540	-0.75K-11K
		his attachment, s –10° to 40°C	, the inverter's allow	able ambient		FR-A5CV02	2 FR-F520	-11K–22K	FR-F540	-15K–22K
		This attachment is for connecting a conduit directly to the inverter. It is mounted on the bottom of the inverter. 30K-55K (200V-400V) inverters can be brought up to IP20 specifications by mounting this attachment. (Standard is IP00)			able inver	e inverter 400V class				
			the bottom of	the FR-A5FN.	N-¢C1 hole	FR-A5FN01		FR-F520-37K		0-30K-3.7K
			Note		(with cap)	FR-A5FN02		520-45K		0-45K-55K
FR-A5FN 🗌 🗌			-1+0	$\rightarrow \oplus \oplus$	FR-A5FN03 FR-F520-55K — FR-A5FN04 FR-F520-30K —	_				
Attachment for conduit	= = = = = = = = = = = = = = = = = = =		2-#C hole		mmm	FR-A5FN04	FR-F	520-30K		_
connection	FR-	ASFN		<u>W1</u> W1	ounting panel surface					
	· · ·		Attachment Dir							its: mm (inch)
			Model	H	W1	H1	D1	N	C	C1
			FR-A5FN01 FR-A5FN02	157.5 (6.20) 297.5 (11.71)	95 (3.74) 113 (4.45)	102.5 (4.04) 227.5 (8.96)	125 (4.92) 120 (4.72)	3	10 (0.39) 12 (0.40)	76 (2.99) 91 (3.58)
			FR-A5FN02 FR-A5FN03	297.5 (11.71)		227.5 (8.96)	120 (4.72)	4	12 (0.40)	91 (3.58)
			FR-A5FN04	190 (7.48)	95 (3.74)	165 (6.50)	128 (5.04)	3	10 (0.39)	76 (2.30)
FR-A5AT FR-AAT FREQROL-A100 <excellent>/ FREQROL-F400 Series mount transportation attachment</excellent>	mounted as is configuration, class FREQRO Notes 1: When the atta 2: The FR-AATO FRE	Since the 15k there is no nee DL-A100 <exce achment is use 9 attachment i CQROL-A100 < Model R-A5AT01 I R-A5AT02 I R-A5AT03</exce 	d, the overall depth s 6mm larger longit EXCELLENT>	5K, 400V class tachments. W of the inverter udinally agains cable inverte 400V	when mounted when mounted the 37K, 400 or class 	FREQROL-A1	00 <excelle longitudinal loly 12–15mm OL-A100 <e2 00 FR-F520 FR-F520 FR-F520 FR-F520 FR-F520 FR-F520 FR-F520 FR-F520</e2 </excelle 	NT> have the is 6mm large higher. XCELLENT>. V class D-2.2K-3.7K D-5.5K-11K D-15K D-22K D-30K	able inver 400 FR-F540-2 FR-F540	ter V class .2K-3.7K/7.5K -0.75K-3.7K/ -15K/22K
	Approx. 300 (11.81) Red White	Green Green	Leakaç	e current: 4mA Alddns 0) (91:0 0)	NFB	Inve	3	Notes:		Units: mm

List of Options

Units: mm (inch)

Name (Type)								Spe	cificat	ions	, config	gurations	s, etc						
		pliant with	•		Directive	es										2-ØC h	ole		
		External dimensions Noise filter Applicable inverter Noise filter external dimensions Approximate Loss Leakage current										৾৾৽য়	व्यक्ते	1					
		model	model		/enter	w	Н	D	W1	H1	С	weight kg (lb)	(W)	referen value (n	ce				
		SF1197	FR-F	540-0.75k	K–3.7K	· /		. ,	(4.61) (,	· /	1.5 (3.3)	10	57					10000000000000000000000000000000000000
		SF1147B	FR-F	540-5.5K/	7.5K	213 (8.39)	360 (14.17)	. ,	(7.09) (,	· /	1.8 (3.97)	51	51				Ξ	
	_	SF1175	FR-F	540-11K/1	15K		530 (20.87)	60 (2.36)	(8.66) (10 (0.39)	4.7 (10.4)	56	76					
	400V	SF1176	FR-F	540-18.5k	K/22K	. ,	600 (23.62)	60 (2.36)	(10.24) (× /	5.9 (13.0)	71	108					
Noise filter (compliant with		SF1177	FR-F	540-30K		. ,	700 (27.56)	. ,	(11.02) (· /	9.4 (20.7)	65	156					
EMC Directives) SF 🗌 🔲		SF1178	FR-F	540-37K/4	45K	. ,	770 (30.31)	. ,	(15.12) (· /	16 (35.3)	74	156		i pi			
		SF1179	FR-F	540-55K		467 (18.39)	920 (36.22)	80 (3.15)	410 (16.14) (895 35.24)	12 (0.47)	19 (41.9)	125	156		-		-C	
	Note		ontiono	the mou	nting od	ontor o	ttoob	mont (n 000000	.,		-				
	With some exceptions, the mounting adapter attachment (FR-A5AT □ □) is necessary. When the adapter is used, the installation dimensions change as a result of an increase in depth.																		
		sures to de se take the				nt error	neous	onera	tion of	nerir	herals :	and electr	ic sho	ocks ca	used by	leakage (≻		
	2. PI br	ease note,	the noi earth le	ise filter's akage rela	leakage ays can	curren	it whe	n sele	cting ea	arth I	eakage	breakers	or ea	rth leak	age rela	ys. Also,	in cases	where e	nel's ground. earth leakage the grounding
					FR-	BEL					Weight				FR-B	EL-H			Weight
			A	В	С	D		Е	F		kg (lb)	Α		В	С	D	E	F	kg (lb)
			. ,	. ,	102 (4.02) 110 (4.33)			. ,	M4 M4	_	0.7 (1.5)	110 (4.33 130 (5.12	,	(2.13) 8 (2.48) 8	35 (3.35) 39 (3.50)		6 (0.24) 6 (0.24)	M3.5 M3.5	0.7 (1.54)
			. ,		110 (4.33)				M4	_	1.2 (2.6)	130 (5.12	<u> </u>	. ,	01 (3.98)	115 (4.53)	. ,	M3.5	1.1 (2.4)
			. ,		102 (4.02) 126 (4.96)				M4 M5	_	1.7 (3.7) 2.2 (4.9)	150 (5.91 150 (5.91	,	. ,	02 (4.02) 24 (4.88)	135 (5.31) 135 (5.31)	. ,	M4 M4	1.7 (3.7) 2.2 (4.9)
			. ,		126 (4.96) 132 (5.20)				M5 M5	_	2.3 (5.1) 3.1 (6.8)	150 (5.91 170 (6.69	,	. ,	24 (4.88) 32 (5.20)	135 (5.31) 155 (6.10)	. ,	M4 M5	2.3 (5.1) 3.1 (6.8)
			. ,	. ,	132 (5.20) 170 (6.69)				M8	_	3.1 (0.8) 3.8 (8.4)			. ,	60 (6.30)	155 (6.10)		M6	3.7 (8.2)
Power factor			. ,	94 (3.70) 1 119 (4.69) 1	184 (7.24)				M8 M8	_	5.1 (11.2) 5.4 (11.9)		,		73 (6.81) 71 (6.73)	165 (6.50) 165 (6.50)	. ,	M6 M6	4.8 (10.6) 5.0 (11.0)
mprovement DC reactor for power supply balancing)			(7.28)	119 (4.69) 2	201 (7.91)	165 (6.	50) 7	(0.28)	M8	_	6.7 (14.8)) 119	(4.69) 1	89 (7.44)	165 (6.50)	7 (0.28)	M6	6.7 (14.8)
FR-BEL(H) 🗌 🗌 K			· /	136 (5.35) 2 136 (5.35) 2	. ,	· ·		. ,	M10	_	7.4 (16.3) 8.0 (17.6)		,	. ,	99 (7.83) 19 (8.62)	175 (6.89) 175 (6.89)	. ,	M8 M8	7.0 (15.4) 8.6 (19.0)
			. ,	136 (5.35) 1	. ,			. ,	M12	_).8 (21.6)		<i>,</i>	. ,		175 (6.89)	· · ·	M8	9.0 (19.8)
	re 2. Th 3. Th 4. Se	s: sure to ren moved, thei e wiring dis e size of the lect accordi the motor,	re is no tance b e wire u ng to m	power facto etween the sed should otor capac	or improventer inverter be the string ity. (Wh	vement) and the ame or ere the	e react great capac	tor shoi er than ity of th	Id be le	ss th /er su	an 5m. Ipply wir	e (R,S,T).			0			nounting pitch	al screw size F
Power factor mprovement AC reactor (for power supply balancing) FR-BAL(H) \Box K All models of the FREQROL-F500 Series can be mounted with a FR-BEL DC reactor by connecting to terminals (P, P1). Compared to the AC reactor, the FR-BEL DC reactor has an improved, higher power ratio while being more compact, weighing less and having fewer wiring points (6 lines for the AC reactor, 2 lines for the DC reactor). Accordingly, we recommend using the FR-BEL DC reactor. Please contact your Mitsubishi Electric inverter distributor if you require the FR-BAL AC reactor.												t, weighing nd using							
Line noise filter FR-BSF01 (for small capacities) FR-BLF	FR-BSF01 110 (4.33) 95 (3.74) 2-\$\phi 5 (0.20) 95 (2.56) 4 (8 10) (95 (2)) 95 (2.56) 13 (1.30) (8 10) (95 (2)) 95 (2) (95 (2)) 10 (95 (2)) 95 (2) (95 (2)) 10 (95				FR-BLF 5 (F7) (0.28) (5 (2)) (5 (2))						 NFB NFB Inverter R Line noise S Line noise S S T Notes: 1. Each phase should be wound at least 3 times (4T, 4 the same direction. (The greater the number of turns more efficient.) 2. When the thickness of the wire prevents winding, us 4 in series and ensure that the current passes throug phase in the same direction. 3. Can be used on the output side in the same way as 1 side. On the output side, the number of turns should than 3 (4T, 4 turns). 4. Please use FR-BSF01 for inverters with small capac 3.7kW or less. Thick wires (38mm² or more) cannot 				(4T, 4 turns) in turns, the ng, use at least through each ay as the input				

FR-HC High-power Factor Converters

- Used for suppressing the high frequencies of the inverter's power supply, it achieves an equivalent capacity conversion coefficient of K5=0 under the "Japanese Harmonics Suppression Countermeasure Guidelines for Specific Customers."
- Improves input current waves into sine waves.
- Reduces input capacity by improving input power factor.

Specifications

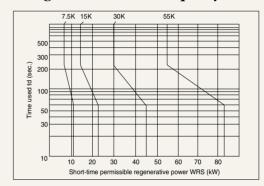
Mode	Model FR-HC-		20	0V		400V					
widde			7.5K 15K 30K		55K	H7.5K	H15K	H30K	H55K		
Applicable	e inverter capacity (Note 1)	3.7K–7.5K	7.5K–15K	15K-30K	30K-55K	3.7K–7.5K	7.5K–15K	15K–30K	30K–55K		
	Rated input age/frequency		nase 200\ V–230V	/–220V 50 60Hz	0Hz	3-phase 380V–460V 50/60Hz					
Rated	d input current	33	61	115	215	17	31	57	110		
Rated ou	tput voltage (V) (Note 2)		DC 293	V–335V	•	DC 558V-670V					
A	Unit kg (lb)	8 (17.6)	15 (33.1)	29 (63.9)	70 (154.3)	9 (19.8)	16 (35.3)	35 (77.2)	72 (158.7)		
Approxi- mate weight kg (lb)	Accessory com- ponents (reactors 1, 2, external box) total kg (lb)	21 (46.3)	31 (68.3)	67 (147.7)	97 (213.8)	23 (50.7)	32 (70.5)	52 (114.6)	94 (207.2)		

Notes

1. With regard to the applicable inverter for the high-power factor converter, the

applicable capacity is the total capacity.

2. The output voltage changes according to the input voltage value.

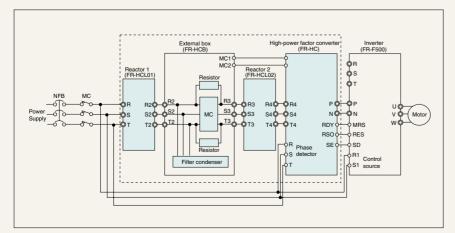

External Dimensions

			FR-HC converter			Reacto	or 1 FR-	HCL01	Reacto	or 2 FR-	HCL02	External box FR-HCB					
ľ	oltage	Capacity	W	Н	D	W	Н	D	W	Н	D	W	Н	D			
		7.5K	220 (8.66)	300 (11.81)	190 (7.48)	160 (6.30)	155 (6.10)	100 (3.94)	240 (9.45)	230 (9.06)	160 (6.30)	190	320	165			
	200V	15K	250 (9.84)	400 (15.75)	190 (7.48)	190 (7.48)	205 (8.07)	130 (5.12)	260 (10.24)	270 (10.63)	170 (6.69)	170 (7.48) (12.60	(12.60)	(6.50)			
	20	30K	340 (13.39)	550 (21.66)	195 (7.68)	200 (7.87)	230 (9.05)	170 (6.69)	340 (13.39)	320 (12.60)	180 (7.09)	270	270	270			203
		55K	480 (18.90)	700 (27.56)	250 (9.84)	210 (8.27)	260 (10.24)	210 (8.27)	430 (16.93)	370 (14.57)	360 (14.17)	(10.63)	(17.72)	(7.99)			
		H7.5K	220 (8.66)	300 (11.81)	190 (7.48)	160 (6.30)	150 (5.91)	100 (3.94)	240 (9.45)	220 (8.66)	160 (6.30)		320 (12.60)				
	400V	H15K	250 (9.84)	400 (15.75)	190 (7.48)	190 (7.48)	195 (7.68)	130 (5.12)	260 (10.24)	260 (10.24)		190 (7.48)		165 (6.50)			
	40	H30K	340 (13.39)	550 (21.65)	195 (7.68)	220 (8.66)	215 (8.46)	140 (5.51)	340 (13.39)	310 (12.20)	180 (7.09)						
		H55K	480 (18.90)	700 (27.56)	250 (9.84)	280 (11.02)	255 (10.04)	190 (7.48)	400 (15.75)	380 (14.96)	285 (11.22)	270 (10.63)	450 (17.72)	203 (7.99)			

• Power source regenerative functions included as standard.

• Integrated converter operation with multiple connection to inverters possible.

Regenerative Power Capacity



 High-power factor converter
 External box

 \square \square </

Units: mm (inch)

External Dimensions

Notes:

- Be sure to open inverter power input terminals R, S and T. If they are incorrectly connected, the inverter will be damaged. Also, if the polarity of terminals P and N are mistaken, the high-power factor converter and the inverter will be damaged.
- 2. The wiring of terminals R4, S4, T4 and terminals R, S and T must match the power supply phase shift.
- 3. Be sure to confirm the order in which reactor 1 and reactor 2 are connected. The reactors will overheat if connection mistakes are made.

35

Standard Motor Application

Motor Loss and Temperature Rise

The temperature of a motor will run a little hotter with an inverter than when operating with a commercial power supply; therefore, there is a limitation for continuous operating torque. Additionally, as the cooling effect is reduced at low-speed, please reduce the motor output torque accordingly. If 100% torque is required during low-speed operation, please consider the use of a constant torque motor.

Torque Characteristics

There may be an occasion when motor torque is lacking (especially starting torque) when operating a motor with an inverter as compared to operation when using a commercial power supply. Please be sure to check the load torque characteristics of the machinery being used.

Vibration

Compared to the drive vibration when using a commercial power supply, the vibration of the motor mounted on the machine may be slightly larger. The occurrence of vibration, if present, could be caused by one of the following.

- 1. Vibration due to unbalanced rotational body of the entire machine.
- 2. Natural frequency resonance of the machinery, especially in the case of a constant-speed machine being operated at variable speeds. Using the frequency jump function operation, bypassing the resonance frequency is possible. Additionally, abnormal vibration may occur if operating a bipolar motor at speeds more than 60Hz. Please check operation specifications closely.

400V Class Motor Inverter Drive

When driving a 400V class motor with an inverter, surge voltage originating from the wiring constant may affect the motor terminal and degrade motor insulation. If this should happen, please consider the following countermeasures.

(1) Strengthen motor insulation

- 1. Please use a motor with reinforced insulation for 400V class inverter operation.
 - Note: Mitsubishi standard 4-pole motors (SF-JR, SB-JR) reinforced insulation specifications match 400V class inverter drive requirements. (0.75–55kW produced and available since August 1997)
- 2. For special motors such as constant-torque motors and lowvibration motors, please specify special motor which is designed for inverter use.
- (2) Confine surge voltage to inverter side

Please connect a filter to the secondary side of the inverter so as to restrain motor terminal voltage to less than 850V. If the motor is driven using a Mitsubishi inverter, connect an optional surge voltage suppression filter (FR-ASF-H) to the secondary side of the inverter.

Application of Special Motors

Motors with a Variable Numbers of Poles

When the number of motor poles is convertible, the rated current will differ from a standard motor, so check the motor's maximum current when selecting an inverter. Be sure to stop the motor before switching the number of poles. Switching on the fly will engage the regenerative overvoltage protection circuit, trigger the inverter alarm, and send the motor into a coasting stop.

Geared Motors

The ranges for continuous operation vary with both the lubrication system used and the manufacturer. Oil lubricated motors are particularly prone to burning of gears when operated exclusively at low speeds. Consult the manufacturer before operating motors at speeds in excess of 60Hz.

Low-Voltage Motors

Please set the inverter torque boost (Pr.0) to approximately 1-2%.

Synchronous Motors

Applications that involve load fluctuations and high impacts can easily put a motor out of synchronization, so these are not suitable applications. They have higher starting currents and rated currents than standard motors and do not maintain stable speeds at low speeds, please take these factors into consideration.

Constant-Torque Motor Application

- As the current is higher than a standard motor, the inverter type should be raised one rank.
- Please set the torque boost at a small figure. Recommended values:
- 0.75kW, 6%; 1.5-3.7kW, 4%; more than 5.5kW, 2%
- If more than two machines are operating simultaneously, synchronized operation as the motor slip is smaller when compared to standard motors; thus, unbalanced torque can occur easily.

For Maximum Safety

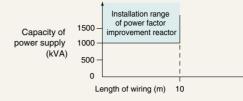
A Please use to ensure safety

- In order to use the equipment properly and safely, please be sure to read the manual before use.
- This product was not designed or manufactured as equipment or a system to be used in situations that can affect or endanger human life.
- When considering this equipment for operations in special machinery or systems used in passenger-moving applications, medical applications, aerospace applications, atomic power applications, electric power applications, or submarine repeating applications, please contact Mitsubishi Electric Corporation's sales department.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices when it is used in facilities where a breakdown in the product is likely to cause a serious accident or loss.
- Please do not use loads other than 3-phase induction motors.

Operation

- To avoid damage to the inverter when an electromagnetic contactor (MC) is installed on the primary side, please do not subject the MC to repeated start/stop operations.
- When a fault occurs in the inverter, the protective function activates and halts inverter output, but does not suddenly stop the motor itself. For this reason, please install the mechanical stopping and holding mechanisms necessary as mechanical equipment for emergency stops.
- Even if the inverter's power supply is cut off, it takes time for the capacitor to discharge. When carrying out inspections, wait for at least 10 minutes after the power supply has been cut off, then use a meter, etc., to confirm the voltage.

Wiring


- The inverter will be damaged if electric power is applied to the inverter's output terminals (U, V, W). Before switching on the power, please check wiring and sequence very carefully to ensure there are no wiring connection errors.
- Terminals P, P1 and N are designed for use in connecting specially designed, dedicated options. Do not connect equipment other than dedicated options to these terminals. Also, please do not create a short circuit between power terminal 10, which is used for setting frequency, and common terminal 5.
- The PR and PX terminals are special manufacturer terminals, please do not connect any wiring to them.

Installation

- Please install the unit in a clean location, avoiding adverse environments such as oil mist, fluff, dust, etc., or use it within a sealed enclosure which will not allow the entry of floating particles. In the latter case, please ensure that the cooling system and dimensions allow the inverter's ambient temperature to remain within the permissible values (see page 4 for specification values). The enclosure can be made more compact if the FR-A5CN option is used for isolating the inverter's heat generating parts outside the enclosure is used.
- Since certain parts of the inverter can get extremely hot, do not attach it to combustible material.
- The unit should be attached to the wall, vertically.

Power Supply

• In cases where the unit is installed directly below a large-capacity power supply (1000 kVA or over, length of wiring 10 meters or less), or where switching of a phase advance capacitor occurs, an excessive peak current may flow in the power input circuit, damaging the inverter. In such cases, be sure to install an optional FR-BEL or FR-BAL power factor improvement reactor.

• If a surge voltage occurs in the power system, the surge energy may flow into the inverter, causing the inverter to execute an overvoltage alarm stop. In such cases, be sure to install an optional FR-BEL or FR-BAL power factor improvement reactor.

Settings

- Using the control panel or the parameter unit for setting makes it possible to set the inverter for high-speed operations up to 120Hz, so a mistake when setting can be very dangerous. Use the upper frequency setting function to set an upper limit.
- Setting the DC braking voltage and operation time at a higher value than the default setting can cause motor overheating (electronic thermal relay trip).

Points to Note

Selecting Inverter Capacity

• In the cases where special motors or several motors are operated in parallel using a single inverter, select an inverter whose capacity is such that the total rated current of the motors is equal to or less than the inverter's rated output current.

Motor Starting Torque

• The starting and accelerating characteristics of motors driven by inverters are constrained by the overload current rating of the inverters used in combination. Torque characteristic values are smaller than when general commercial power supplies are used. If larger starting torque is required and torque boost adjustment is insufficient, select an inverter with a capacity rank one level higher or increase the rank of both the motor and inverter capacity.

Acceleration / Deceleration Time

- The motor's acceleration/deceleration time is determined by the torque and load torque generated by the motor, and by the moment of inertia (GD²) of the load.
- In the case where the current limit function or stall prevention function activates during acceleration/deceleration, the time sometimes increases, so please make the acceleration/deceleration time greater.
- When you wish to shorten the acceleration/deceleration time, make the torque boost value larger. (Making the torque boost value too large may activate the stall prevention function, otherwise, try lengthening the acceleration time.) If this is still not enough, increase the capacity of both the inverter and the motor. To shorten the deceleration time, it is necessary to add the optional FR-BU brake unit or the optional FR-RC power regenerating converter, etc., necessary for absorbing braking energy.

Power Transfer Devices (Reduction gears, belt, chain, etc.)

• Oil circulation systems are used for gearboxes or changing/ reduction gears of power transfer systems, and if continuous operation is only in the low-speed range, there is a possibility of gear seizure due to poor oil circulation. Please watch for this problem carefully. On the other hand, if a motor is operated at high speeds of more than 60Hz, careful attention should be given to watch for problems with the noise, lifetime and centrifugal force of the power transfer devices due to reduced strength, etc.

Selecting and Installing No-fuse Breakers

Please install a no-fuse breaker (NFB) on the incoming side to protect the wiring on the inverter's primary side. The selection of the NFB depends on the power factor on the inverter's power supply side (changes in supply voltage, output frequency, load); In particular, since the operating characteristics of fully electromagnetic type NFBs change according to high frequency current, it is necessary to select larger capacities. (Use the materials on the appropriate breakers for confirmation.) Also, for leakage breakers, please use models that have been designed to cope with high frequencies and surges, such as Mitsubishi's Progressive Super NV.

Handling Primary Side Electromagnetic Contactors

Inverters may be used without electromagnetic contactors (MC) on the power supply side. In the case of operations using external terminals (using terminals STF or STR), even if a primary-side MC is installed to prevent accidents caused by natural restarts when power is restored following instantaneous power failures, etc., or to ensure safety during maintenance operations, please do not use the MC to execute frequent start/stop operations (the switching life of an inverter input circuit is approximately 100000 operations). In PU operation mode, inverters do not restart automatically after power is restored, so they cannot be restarted by the MC. It is possible to halt operations using a primary side MC, but the inverter's special regenerative brake does not function and the motor coasts to a stop.

Handling Secondary Side Electromagnetic Contactors

Please note carefully that when an electromagnetic contactor is installed between the inverter and the motor, and an OFF/ON procedure is performed during operations, a large inrush current occurs and may affect the motor. When an MC is installed for switching to commercial power supplies, etc., we recommend that you use commercial power supply switchover functions Pr.135–Pr.139.

Installing Thermal Relays

The inverter is provided with a protection function that employs an electronic thermal relay to protect the motor from overheating. However, in cases where several motors or multi-polar motors are operated using a single inverter, please install a heat-activated type thermal relay (OCR) between the inverter and the motor(s). In such cases, set the inverter's electronic thermal relay to 0 A, and the OCR setting to 1.1 times the current value on the motor's rating plate taking inter-wire leakage current into account.

Secondary-side Measuring Instruments

When the wiring between the inverter and the motor is long, the effects of inter-wire leakage current, especially with small-capacity, 400V class units, may cause heating in instruments or Current Transformers. For this reason, please select instruments that have an adequate current rating.

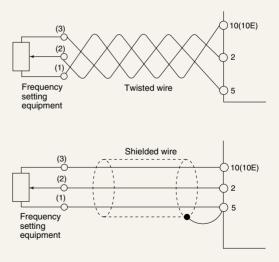
When the inverter's output voltage and output current are measured and displayed, we recommend that you make use of the inverter's AM-5 terminal output function.

Removal of Power Factor Improvement Condenser (Phase Advance Capacitor)

There is a danger that the high frequency components of the inverter's output will cause overheating and damage any power factor improvement capacitor and surge killer installed on the inverter's output side. Furthermore, neither capacitor nor surge killers should be inserted because current flows in the inverter causing the overcurrent protection function to activate. Use the power factor improvement DC reactor (page 32) for power improvement.

Regarding Noise, Leakage Current, High-Frequency Power-Supply

Characteristics of inverters include noise, leakage current and high-frequency power-supplies. As the countermeasures for each are different, please refer to pages 30 and 31 for further details on the steps for correct countermeasures.


Wiring Thickness and Distances

When the wiring distance between the inverter and the motor is long, use a thick wire that will keep the drop in voltage in the main circuit cable to 2% or less, especially during low frequency output. In cases of long distance cabling, the effects of charging current arising from floating capacity in the wiring may cause the overcurrent protection function to activate erroneously, so the maximum length of the wiring should not exceed 500 meters.

Please use the recommended connecting cable when installing the control panel (parameter unit) separately from the main body.

When performing remote operations using analog signals, the control wire between the control signal and the inverter should be a maximum of 30 meters long, and should be isolated from power circuits (main circuit and relay sequence circuits) so as not to be affected by induction from other equipment.

When the frequency is set using an external volume control (potentiometer) rather than the control panel (parameter unit), please use shielded or twisted wire as shown in the drawing, and connect the shield to terminal 5, not to earth.

Grounding

Always ground the inverter and the motor. Furthermore, when grounding the inverter, it is essential to use the inverter's grounding terminal, not its case or chassis.

Safety Warning To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

ACP&D Limited Units 6 & 9A, Charlestown Industrial Estate, Robinson Street, Ashton-under-Lyne, Lancashire, OL6 8NS.

+44 (0)161 343 1884 Tel:

+44 (0)161 339 0650 Fax: e-mail: sales@acpd.co.uk Websites: www.acpd.com & www.acpd.co.uk

A MITSUBISHI ELECTRIC CORPORATION